Biblio

Found 1593 results

Filters: First Letter Of Title is A  [Clear All Filters]
2022-10-12
Sharevski, Filipo, Jachim, Peter.  2021.  Alexa in Phishingland: Empirical Assessment of Susceptibility to Phishing Pretexting in Voice Assistant Environments. 2021 IEEE Security and Privacy Workshops (SPW). :207—213.
This paper investigates what cues people use to spot a phishing email when the email is spoken back to them by the Alexa voice assistant, instead of read on a screen. We configured Alexa to read there emails to a sample of 52 participants and ask for their phishing evaluations. We also asked a control group of another 52 participants to evaluate these emails on a regular screen to compare the plausibility of phishing pretexting in voice assistant environments. The results suggest that Alexa can be used for pretexting users that lack phishing awareness to receive and act upon a relatively urgent email from an authoritative sender. Inspecting the sender (authority cue”) and relying on their personal experiences helped participants with higher phishing awareness to use Alexa towards a preliminary email screening to flag an email as potentially “phishing.”
2021-12-20
Petrenkov, Denis, Agafonov, Anton.  2021.  Anomaly Detection in Vehicle Platoon with Third-Order Consensus Control. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0463–0466.
The development of autonomous connected vehicles, in particular, moving as a platoon formation, has received great attention in recent years. The autonomous movement allows to increase the efficiency of the transportation infrastructure usage, reduce the fuel consumption, improve road safety, decrease traffic congestion, and others. To maintain an optimal spacing policy in a platoon formation, it is necessary to exchange information between vehicles. The Vehicular ad hoc Network (VANET) is the key component to establish wireless vehicle-to-vehicle communications. However, vehicular communications can be affected by different security threats. In this paper, we consider the third-order consensus approach as a control strategy for the vehicle platoon. We investigate several types of malicious attacks (spoofing, message falsification) and propose an anomaly detection algorithm that allows us to detect the malicious vehicle and enhance the security of the vehicle platoon. The experimental study of the proposed approach is conducted using Plexe, a vehicular network simulator that permits the realistic simulation of platooning systems.
2022-03-22
Xi, Lanlan, Xin, Yang, Luo, Shoushan, Shang, Yanlei, Tang, Qifeng.  2021.  Anomaly Detection Mechanism Based on Hierarchical Weights through Large-Scale Log Data. 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI). :106—115.
In order to realize Intelligent Disaster Recovery and break the traditional reactive backup mode, it is necessary to forecast the potential system anomalies, and proactively backup the real-time datas and configurations. System logs record the running status as well as the critical events (including errors and warnings), which can help to detect system performance, debug system faults and analyze the causes of anomalies. What's more, with the features of real-time, hierarchies and easy-access, log data can be an ideal source for monitoring system status. To reduce the complexity and improve the robustness and practicability of existing log-based anomaly detection methods, we propose a new anomaly detection mechanism based on hierarchical weights, which can deal with unstable log data. We firstly extract semantic information of log strings, and get the word-level weights by SIF algorithm to embed log strings into vectors, which are then feed into attention-based Long Short-Term Memory(LSTM) deep learning network model. In addition to get sentence-level weight which can be used to explore the interdependence between different log sequences and improve the accuracy, we utilize attention weights to help with building workflow to diagnose the abnormal points in the execution of a specific task. Our experimental results show that the hierarchical weights mechanism can effectively improve accuracy of perdition task and reduce complexity of the model, which provides the feasibility foundation support for Intelligent Disaster Recovery.
2021-12-20
Alabugin, Sergei K., Sokolov, Alexander N..  2021.  Applying of Recurrent Neural Networks for Industrial Processes Anomaly Detection. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0467–0470.
The paper considers the issue of recurrent neural networks applicability for detecting industrial process anomalies to detect intrusion in Industrial Control Systems. Cyberattack on Industrial Control Systems often leads to appearing of anomalies in industrial process. Thus, it is proposed to detect such anomalies by forecasting the state of an industrial process using a recurrent neural network and comparing the predicted state with actual process' state. In the course of experimental research, a recurrent neural network with one-dimensional convolutional layer was implemented. The Secure Water Treatment dataset was used to train model and assess its quality. The obtained results indicate the possibility of using the proposed method in practice. The proposed method is characterized by the absence of the need to use anomaly data for training. Also, the method has significant interpretability and allows to localize an anomaly by pointing to a sensor or actuator whose signal does not match the model's prediction.
2022-08-12
Siu, Jun Yen, Kumar, Nishant, Panda, Sanjib Kumar.  2021.  Attack Detection and Mitigation using Multi-Agent System in the Deregulated Market. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia). :821—826.
Over the past decade, cyber-attack events on the electricity grid are on the rise and have proven to result in severe consequences in grid operation. These attacks are becoming more intelligent and can bypass existing protection protocols, resulting in economic losses due to system operating in a falsified and non-optimal condition over a prolonged period. Hence, it is crucial to develop defense tools to detect and mitigate the attack to minimize the cost of malicious operation. This paper aims to develop a novel command verification strategy to detect and mitigate False Data Injection Attacks (FDIAs) targeting the system centralized Economic Dispatch (ED) control signals. Firstly, we describe the ED problem in Singapore's deregulated market. We then perform a risk assessment and formulate two FDIA vectors - Man in the Middle (MITM) and Stealth attack on the ED control process. Subsequently, we propose a novel verification technique based on Multi-Agent System (MAS) to validate the control commands. This algorithm has been tested on the IEEE 6-Bus 3-generator test system, and experimental results verified that the proposed algorithm can detect and mitigate the FDIA vectors.
2022-08-26
Ghosal, Sandip, Shyamasundar, R. K..  2021.  An Axiomatic Approach to Detect Information Leaks in Concurrent Programs. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :31—35.
Realizing flow security in a concurrent environment is extremely challenging, primarily due to non-deterministic nature of execution. The difficulty is further exacerbated from a security angle if sequential threads disclose control locations through publicly observable statements like print, sleep, delay, etc. Such observations lead to internal and external timing attacks. Inspired by previous works that use classical Hoare style proof systems for establishing correctness of distributed (real-time) programs, in this paper, we describe a method for finding information leaks in concurrent programs through the introduction of leaky assertions at observable program points. Specifying leaky assertions akin to classic assertions, we demonstrate how information leaks can be detected in a concurrent context. To our knowledge, this is the first such work that enables integration of different notions of non-interference used in functional and security context. While the approach is sound and relatively complete in the classic sense, it enables the use of algorithmic techniques that enable programmers to come up with leaky assertions that enable checking for information leaks in sensitive applications.
2021-12-21
Kazempour, Narges, Mirmohseni, Mahtab, Aref, Mohammad Reza.  2021.  Anonymous Mutual Authentication: An Information Theoretic Framework. 2021 Iran Workshop on Communication and Information Theory (IWCIT). :1–6.
We consider the anonymous mutual authentication problem, which consists of a certificate authority, single or multiple verifiers, many legitimate users (provers) and any arbitrary number of illegitimate users. The legal verifier and a legitimate user must be mutually authenticated to each other using the user's key, while the identity of the user must stay unrevealed. An attacker (illegitimate prover) as well as an illegal verifier must fail in authentication. A general interactive information theoretic framework in a finite field is proposed, where the normalized total key rate as a metric for reliability is defined. Maximizing this rate has a trade-off with establishing anonymity. The problem is studied in two different scenarios: centralized scenario (one single verifier performs the authentication process) and distributed scenario (authentication is done by N verifiers, distributively). For both scenarios, achievable schemes, which satisfy the completeness, soundness (at both verifier and prover) and anonymity properties, are proposed. Increasing the size of the field, results in the key rate approaching its upper bound.
2022-06-09
Fadul, Mohamed K. M., Reising, Donald R., Arasu, K. T., Clark, Michael R..  2021.  Adversarial Machine Learning for Enhanced Spread Spectrum Communications. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :783–788.
Recently deep learning has demonstrated much success within the fields of image and natural language processing, facial recognition, and computer vision. The success is attributed to large, accessible databases and deep learning's ability to learn highly accurate models. Thus, deep learning is being investigated as a viable end-to-end approach to digital communications design. This work investigates the use of adversarial deep learning to ensure that a radio can communicate covertly, via Direct Sequence Spread Spectrum (DSSS), with another while a third (the adversary) is actively attempting to detect, intercept and exploit their communications. The adversary's ability to detect and exploit the DSSS signals is hindered by: (i) generating a set of spreading codes that are balanced and result in low side lobes as well as (ii) actively adapting the encoding scheme. Lastly, DSSS communications performance is assessed using energy constrained devices to accurately portray IoT and IoBT device limitations.
2022-08-26
Dai, Jiahao, Chen, Yongqun.  2021.  Analysis of Attack Effectiveness Evaluation of AD hoc Networks based on Rough Set Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :489—492.
This paper mainly studies an attack effectiveness evaluation method for AD hoc networks based on rough set theory. Firstly, we use OPNET to build AD hoc network simulation scenario, design and develop attack module, and obtain network performance parameters before and after the attack. Then the rough set theory is used to evaluate the attack effectiveness. The results show that this method can effectively evaluate the performance of AD hoc networks before and after attacks.
2022-05-19
Anusha, M, Leelavathi, R.  2021.  Analysis on Sentiment Analytics Using Deep Learning Techniques. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :542–547.
Sentiment analytics is the process of applying natural language processing and methods for text-based information to define and extract subjective knowledge of the text. Natural language processing and text classifications can deal with limited corpus data and more attention has been gained by semantic texts and word embedding methods. Deep learning is a powerful method that learns different layers of representations or qualities of information and produces state-of-the-art prediction results. In different applications of sentiment analytics, deep learning methods are used at the sentence, document, and aspect levels. This review paper is based on the main difficulties in the sentiment assessment stage that significantly affect sentiment score, pooling, and polarity detection. The most popular deep learning methods are a Convolution Neural Network and Recurrent Neural Network. Finally, a comparative study is made with a vast literature survey using deep learning models.
2022-08-26
Xia, Hongbing, Bao, Jinzhou, Guo, Ping.  2021.  Asymptotically Stable Fault Tolerant Control for Nonlinear Systems Through Differential Game Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :262—266.
This paper investigates an asymptotically stable fault tolerant control (FTC) method for nonlinear continuous-time systems (NCTS) with actuator failures via differential game theory (DGT). Based on DGT, the FTC problem can be regarded as a two-player differential game problem with control player and fault player, which is solved by utilizing adaptive dynamic programming technique. Using a critic-only neural network, the cost function is approximated to obtain the solution of the Hamilton-Jacobi-Isaacs equation (HJIE). Then, the FTC strategy can be obtained based on the saddle point of HJIE, and ensures the satisfactory control performance for NCTS. Furthermore, the closed-loop NCTS can be guaranteed to be asymptotically stable, rather than ultimately uniformly bounded in corresponding existing methods. Finally, a simulation example is provided to verify the safe and reliable fault tolerance performance of the designed control method.
2022-07-28
[Anonymous].  2021.  An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
2022-05-10
Shin, Ho-Chul, Na, Kiin.  2021.  Abnormal Situation Detection using Global Surveillance Map. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :769–772.
in this paper, we describe a method for detecting abnormal pedestrians or cars by expressing the behavioral characteristics of pedestrians on a global surveillance map in a video security system using CCTV and patrol robots. This method converts a large amount of video surveillance data into a compressed map shape format to efficiently transmit and process data. By using deep learning auto-encoder and CNN algorithm, pedestrians belonging to the abnormal category can be detected in two steps. In the case of the first-stage abnormal candidate extraction, the normal detection rate was 87.7%, the abnormal detection rate was 88.3%, and in the second stage abnormal candidate filtering, the normal detection rate was 99.8% and the abnormal detection rate was 96.5%.
2022-01-25
He, YaChen, Dong, Guishan, Liu, Dong, Peng, Haiyang, Chen, Yuxiang.  2021.  Access Control Scheme Supporting Attribute Revocation in Cloud Computing. 2021 International Conference on Networking and Network Applications (NaNA). :379–384.
To break the data barrier of the information island and explore the value of data in the past few years, it has become a trend of uploading data to the cloud by data owners for data sharing. At the same time, they also hope that the uploaded data can still be controlled, which makes access control of cloud data become an intractable problem. As a famous cryptographic technology, ciphertext policy-based attribute encryption (CP-ABE) not only assures data confidentiality but implements fine-grained access control. However, the actual application of CP-ABE has its inherent challenge in attribute revocation. To address this challenge, we proposed an access control solution supporting attribute revocation in cloud computing. Unlike previous attribute revocation schemes, to solve the problem of excessive attribute revocation overhead, we use symmetric encryption technology to encrypt the plaintext data firstly, and then, encrypting the symmetric key by utilizing public-key encryption technology according to the access structure, so that only the key ciphertext is necessary to update when the attributes are revoked, which reduces the spending of ciphertext update to a great degree. The comparative analysis demonstrates that our solution is reasonably efficient and more secure to support attribute revocation and access control after data sharing.
2022-06-30
Ergün, Salih, Maden, Fatih.  2021.  An ADC Based Random Number Generator from a Discrete Time Chaotic Map. 2021 26th IEEE Asia-Pacific Conference on Communications (APCC). :79—82.
This paper introduces a robust random number generator that based on Bernoulli discrete chaotic map. An eight bit SAR ADC is used with discrete time chaotic map to generate random bit sequences. Compared to RNGs that use the continuous time chaotic map, sensitivity to process, voltage and temperature (PVT) variations are reduced. Thanks to utilizing switch capacitor circuits to implement Bernoulli chaotic map equations, power consumption decreased significantly. Proposed design that has a throughput of 500 Kbit/second is implemented in TSMC 180 nm process technology. Generated bit sequences has successfully passed all four primary tests of FIPS-140-2 test suite and all tests of NIST 820–22 test suite without post processing. Furthermore, data rate can be increased by sacrificing power consumption. Hence, proposed architecture could be utilized in high speed cryptography applications.
2022-04-18
Kang, Ji, Sun, Yi, Xie, Hui, Zhu, Xixi, Ding, Zhaoyun.  2021.  Analysis System for Security Situation in Cyberspace Based on Knowledge Graph. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :385–392.
With the booming of Internet technology, the continuous emergence of new technologies and new algorithms greatly expands the application boundaries of cyberspace. While enjoying the convenience brought by informatization, the society is also facing increasingly severe threats to the security of cyberspace. In cyber security defense, cyberspace operators rely on the discovered vulnerabilities, attack patterns, TTPs, and other knowledge to observe, analyze and determine the current threats to the network and security situation in cyberspace, and then make corresponding decisions. However, most of such open-source knowledge is distributed in different data sources in the form of text or web pages, which is not conducive to the understanding, query and correlation analysis of cyberspace operators. In this paper, a knowledge graph for cyber security is constructed to solve this problem. At first, in the process of obtaining security data from multi-source heterogeneous cyberspaces, we adopt efficient crawler to crawl the required data, paving the way for knowledge graph building. In order to establish the ontology required by the knowledge graph, we abstract the overall framework of security data sources in cyberspace, and depict in detail the correlations among various data sources. Then, based on the \$$\backslash$mathbfOWL +$\backslash$mathbfSWRL\$ language, we construct the cyber security knowledge graph. On this basis, we design an analysis system for situation in cyberspace based on knowledge graph and the Snort intrusion detection system (IDS), and study the rules in Snort. The system integrates and links various public resources from the Internet, including key information such as general platforms, vulnerabilities, weaknesses, attack patterns, tactics, techniques, etc. in real cyberspace, enabling the provision of comprehensive, systematic and rich cyber security knowledge to security researchers and professionals, with the expectation to provide a useful reference for cyber security defense.
2022-06-07
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2022-04-22
Zhang, Cuicui, Sun, Jiali, Lu, Ruixuan, Wang, Peng.  2021.  Anomaly Detection Model of Power Grid Data Based on STL Decomposition. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1262—1265.
This paper designs a data anomaly detection method for power grid data centers. The method uses cloud computing architecture to realize the storage and calculation of large amounts of data from power grid data centers. After that, the STL decomposition method is used to decompose the grid data, and then the decomposed residual data is used for anomaly analysis to complete the detection of abnormal data in the grid data. Finally, the feasibility of the method is verified through experiments.
2022-09-30
Burgetová, Ivana, Matoušek, Petr, Ryšavý, Ondřej.  2021.  Anomaly Detection of ICS Communication Using Statistical Models. 2021 17th International Conference on Network and Service Management (CNSM). :166–172.
Industrial Control System (ICS) transmits control and monitoring data between devices in an industrial environment that includes smart grids, water and gas distribution, or traffic control. Unlike traditional internet communication, ICS traffic is stable, periodical, and with regular communication patterns that can be described using statistical modeling. By observing selected features of ICS transmission, e.g., packet direction and inter-arrival times, we can create a statistical profile of the communication based on distribution of features learned from the normal ICS traffic. This paper demonstrates that using statistical modeling, we can detect various anomalies caused by irregular transmissions, device or link failures, and also cyber attacks like packet injection, scanning, or denial of service (DoS). The paper shows how a statistical model is automatically created from a training dataset. We present two types of statistical profiles: the master-oriented profile for one-to-many communication and the peer-to-peer profile that describes traffic between two ICS devices. The proposed approach is fast and easy to implement as a part of an intrusion detection system (IDS) or an anomaly detection (AD) module. The proof-of-concept is demonstrated on two industrial protocols: IEC 60870-5-104 (aka IEC 104) and IEC 61850 (Goose).
2022-06-30
Mathai, Angelo, Nirmal, Atharv, Chaudhari, Purva, Deshmukh, Vedant, Dhamdhere, Shantanu, Joglekar, Pushkar.  2021.  Audio CAPTCHA for Visually Impaired. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—5.
Completely Automated Public Turing Tests (CAPTCHA) have been used to differentiate between computers and humans for quite some time now. There are many different varieties of CAPTCHAs - text-based, image-based, audio, video, arithmetic, etc. However, not all varieties are suitable for the visually impaired. As time goes by and Spambots and APIs grow more accurate, the CAPTCHA tests have been constantly updated to stay relevant, but that has not happened with the audio CAPTCHA. There exists an audio CAPTCHA intended for the blind/visually impaired but many blind/visually impaired find it difficult to solve. We propose an alternative to the existing system, which would make use of unique sound samples layered with music generated through GANs (Generative Adversarial Networks) along with noise and other layers of sounds to make it difficult to dissect. The user has to count the number of times the unique sound was heard in the sample and then input that number. Since there are no letters or numbers involved in the samples, speech-to-text bots/APIs cannot be used directly to decipher this system. Also, any user regardless of their native language can comfortably use this system.
2022-10-20
Larsen, Raphaël M.J.I., Pahl, Marc-Oliver, Coatrieux, Gouenou.  2021.  Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
2022-09-09
Liu, Xu, Fang, Dongxu, Xu, Peng.  2021.  Automated Performance Benchmarking Platform of IaaS Cloud. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1405.
With the rapid development of cloud computing, IaaS (Infrastructure as a Service) becomes more and more popular. IaaS customers may not clearly know the actual performance of each cloud platform. Moreover, there are no unified standards in performance evaluation of IaaS VMs (virtual machine). The underlying virtualization technology of IaaS cloud is transparent to customers. In this paper, we will design an automated performance benchmarking platform which can automatically install, configure and execute each benchmarking tool with a configuration center. This platform can easily visualize multidimensional benchmarking parameters data of each IaaS cloud platform. We also rented four IaaS VMs from AliCloud-Beijing, AliCloud-Qingdao, UCloud and Huawei to validate our benchmarking system. Performance comparisons of multiple parameters between multiple platforms were shown in this paper. However, in practice, customers' applications running on VMs are often complex. Performance of complex applications may not depend on single benchmarking parameter (e.g. CPU, memory, disk I/O etc.). We ran a TPC-C test for example to get overall performance in MySQL application scenario. The effects of different benchmarking parameters differ in this specific scenario.
2022-10-20
Chen, Wenhao, Lin, Li, Newman, Jennifer, Guan, Yong.  2021.  Automatic Detection of Android Steganography Apps via Symbolic Execution and Tree Matching. 2021 IEEE Conference on Communications and Network Security (CNS). :254—262.
The recent focus of cyber security on automated detection of malware for Android apps has omitted the study of some apps used for “legitimate” purposes, such as steganography apps. Mobile steganography apps can be used for delivering harmful messages, and while current research on steganalysis targets the detection of stego images using academic algorithms and well-built benchmarking image data sets, the community has overlooked uncovering a mobile app itself for its ability to perform steganographic embedding. Developing automatic tools for identifying the code in a suspect app as a stego app can be very challenging: steganography algorithms can be represented in a variety of ways, and there exists many image editing algorithms which appear similar to steganography algorithms.This paper proposes the first automated approach to detect Android steganography apps. We use symbolic execution to summarize an app’s image operation behavior into expression trees, and match the extracted expression trees with reference trees that represents the expected behavior of a steganography embedding process. We use a structural feature based similarity measure to calculate the similarity between expression trees. Our experiments show that, the propose approach can detect real world Android stego apps that implement common spatial domain and frequency domain embedding algorithms with a high degree of accuracy. Furthermore, our procedure describes a general framework that has the potential to be applied to other similar questions when studying program behaviors.
2022-02-24
Zhang, Maojun, Zhu, Guangxu, Wang, Shuai, Jiang, Jiamo, Zhong, Caijun, Cui, Shuguang.  2021.  Accelerating Federated Edge Learning via Optimized Probabilistic Device Scheduling. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :606–610.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
2022-03-01
Li, Xiaojian, Chen, Jing, Jiang, Yiyi, Hu, Hangping, Yang, Haopeng.  2021.  An Accountability-Oriented Generation approach to Time-Varying Structure of Cloud Service. 2021 IEEE International Conference on Services Computing (SCC). :413–418.
In the current cloud service development, during the widely used of cloud service, it can self organize and respond on demand when the cloud service in phenomenon of failure or violation, but it may still cause violation. The first step in forecasting or accountability for this situation, is to generate a dynamic structure of cloud services in a timely manner. In this research, it has presented a method to generate the time-varying structure of cloud service. Firstly, dependencies between tasks and even instances within a job of cloud service are visualized to explore the time-varying characteristics contained in the cloud service structure. And then, those dependencies are discovered quantitatively using CNN (Convolutional Neural Networks). Finally, it structured into an event network of cloud service for tracing violation and other usages. A validation to this approach has been examined by an experiment based on Alibaba’s dataset. A function integrity of this approach may up to 0.80, which is higher than Bai Y and others which is no more than 0.60.