Biblio

Found 1333 results

Filters: First Letter Of Title is E  [Clear All Filters]
2018-05-25
Munir, Sirajum, Ahmed, Mohsin, Stankovic, John.  2015.  EyePhy: Detecting Dependencies in Cyber-Physical System Apps Due to Human-in-the-Loop. Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :170–179.
2016-12-06
Ju-Sung Lee, Jurgen Pfeffer.  2015.  Estimating Centrality Statistics for Large Scale and Sampled Networks: Some Approaches and Complications. 2015 48th Hawaii International Conference on System Sciences.

The study of large, “big data” networks is becoming increasingly common and relevant to our understanding of human systems. Many of the studied networks are drawn from social media and other web-based sources. As such, in-depth analysis of these dynamic structures e.g. in the context of cybersecurity, remains especially challenging. Due to the time and resources incurred in computing network measures for large networks, it is practical to approximate these whenever possible. We present some approximation techniques exploiting any tractable relationship between the measures and network characteristics such as size and density. We find there exist distinct functional relationships between network statistics of complex “slow” measures and “fast” measures, such as the linkage between betweenness centrality and network density. We also track how these relationships scale with network size. Specifically, we explore the effi- cacy of both linear modeling (i.e., correlations and least squares regression) and non-linear modeling in estimating the network measures of interest. We find that sparse, but not severely sparse, networks which admit sufficient entropy incur the most variance in the network statistics and, hence, more error in the estimation. We review our approaches with three prominent network topologies: random (aka Erdos-R ˝ enyi), Watts- ´ Strogatz small-world, and scale-free networks. Finally, we assess how well the estimation approaches perform for sub-sampled networks.

2016-02-15
Ghita Mezzour, Kathleen Carley, L. Richard Carley.  2015.  An empirical study of global malware encounters. HotSoS '15 Proceedings of the 2015 Symposium and Bootcamp on the Science of Security.

The number of trojans, worms, and viruses that computers encounter varies greatly across countries. Empirically identifying factors behind such variation can provide a scientific empirical basis to policy actions to reduce malware encounters in the most affected countries. However, our understanding of these factors is currently mainly based on expert opinions, not empirical evidence.

In this paper, we empirically test alternative hypotheses about factors behind international variation in the number of trojan, worm, and virus encounters. We use the Symantec Anti-Virus (AV) telemetry data collected from more than 10 million Symantec customer computers worldwide that we accessed through the Symantec Worldwide Intelligence Environment (WINE) platform. We use regression analysis to test for the effect of computing and monetary resources, web browsing behavior, computer piracy, cyber security expertise, and international relations on international variation in malware encounters.

We find that trojans, worms, and viruses are most prevalent in Sub-Saharan African countries. Many Asian countries also encounter substantial quantities of malware. Our regression analysis reveals that the main factor that explains high malware exposure of these countries is a widespread computer piracy especially when combined with poverty. Our regression analysis also reveals that, surprisingly, web browsing behavior, cyber security expertise, and international relations have no significant effect.

Shurui Zhou, Jafar Al-Kofahi, Tien Nguyen, Christian Kästner, Sarah Nadi.  2015.  Extracting configuration knowledge from build files with symbolic analysis. RELENG '15 Proceedings of the Third International Workshop on Release Engineering.

Build systems contain a lot of configuration knowledge about a software system, such as under which conditions specific files are compiled. Extracting such configuration knowledge is important for many tools analyzing highly-configurable systems, but very challenging due to the complex nature of build systems. We design an approach, based on SYMake, that symbolically evaluates Makefiles and extracts configuration knowledge in terms of file presence conditions and conditional parameters. We implement an initial prototype and demonstrate feasibility on small examples.

2017-02-15
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Generalized Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy jeuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.

2016-02-15
Waqar Ahmad, Joshua Sunshine, Christian Kästner, Adam Wynne.  2015.  Enforcing Fine-Grained Security and Privacy Policies in an Ecosystem within an Ecosystem. Systems, Programming, Languages and Applications: Software for Humanity (SPLASH).

Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users' sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permission in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.

2016-02-11
Ivan Ruchkin, Ashwini Rao, Dio De Niz, Sagar Chaki, David Garlan.  2015.  Eliminating Inter-Domain Vulnerabilities in Cyber-Physical Systems: An Analysis Contracts Approach. CPS-SPC '15 Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy.

Designing secure cyber-physical systems (CPS) is a particularly difficult task since security vulnerabilities stem not only from traditional cybersecurity concerns, but also physical ones. Many of the standard methods for CPS design make strong and unverified assumptions about the trustworthiness of physical devices, such as sensors. When these assumptions are violated, subtle inter-domain vulnerabilities are introduced into the system model. In this paper we use formal specification of analysis contracts to expose security assumptions and guarantees of analyses from reliability, control, and sensor security domains. We show that this specification allows us to determine where these assumptions are violated, opening the door to malicious attacks. We demonstrate how this approach can help discover and prevent vulnerabilities using a self-driving car example.

2016-02-15
Ivan Ruchkin, Ashwini Rao, Dio De Niz, Sagar Chaki, David Garlan.  2015.  Eliminating Inter-Domain Vulnerabilities in Cyber-PhysicalSystems: An Analysis Contracts Approach. CPS-SPC '15 Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy.

Designing secure cyber-physical systems (CPS) is a particularly difficult task since security vulnerabilities stem not only from traditional cybersecurity concerns, but also physical ones. Many of the standard methods for CPS design make strong and unverified assumptions about the trustworthiness of physical devices, such as sensors. When these assumptions are violated, subtle inter-domain vulnerabilities are introduced into the system model. In this paper we use formal specification of analysis contracts to expose security assumptions and guarantees of analyses from reliability, control, and sensor security domains. We show that this specification allows us to determine where these assumptions are violated, opening the door to malicious attacks. We demonstrate how this approach can help discover and prevent vulnerabilities using a self-driving car example.

2016-12-07
Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, Joshua Sunshine.  2015.  Evaluating the Flexibility of the Java Sandbox. ACSAC 2015 Proceedings of the 31st Annual Computer Security Applications Conference.

The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.

2016-01-15
Waqar Ahmad, Joshua Sunshine, Christian Kästner, Adam Wynne.  2015.  Enforcing Fine-Grained Security and Privacy Policies in an Ecosystem within an Ecosystem. MobileDeLi 2015 .

Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users’ sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permissions in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.

2016-02-10
Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, Joshua Sunshine.  2015.  Evaluating the Flexibility of the Java Sandbox. ACSAC Annual Computer Security Applications Conference.

The ubiquitously-installed Java Runtime Environment (JRE) provides a complex, flexible set of mechanisms that support the execution of untrusted code inside a secure sandbox. However, many recent exploits have successfully escaped the sandbox, allowing attackers to infect numerous Java hosts. We hypothesize that the Java security model affords developers more flexibility than they need or use in practice, and thus its complexity compromises security without improving practical functionality. We describe an empirical study of the ways benign open-source Java applications use and interact with the Java security manager. We found that developers regularly misunderstand or misuse Java security mechanisms, that benign programs do not use all of the vast flexibility afforded by the Java security model, and that there are clear differences between the ways benign and exploit programs interact with the security manager. We validate these results by deriving two restrictions on application behavior that restrict (1) security manager modifications and (2) privilege escalation. We demonstrate that enforcing these rules at runtime stop a representative proportion of modern Java 7 exploits without breaking backwards compatibility with benign applications. These practical rules should be enforced in the JRE to fortify the Java sandbox.

2018-05-17
Coogan, S., Arcak, M..  2015.  Efficient finite abstraction of mixed monotone systems. 18th ACM International Conference on Hybrid Systems: Computation and Control. :58-67.
2016-05-04
Xianqing Yu, P. Ning, M. A. Vouk.  2015.  Enhancing security of Hadoop in a public cloud. Information and Communication Systems (ICICS), 2015 6th International Conference on. :38-43.

Hadoop has become increasingly popular as it rapidly processes data in parallel. Cloud computing gives reliability, flexibility, scalability, elasticity and cost saving to cloud users. Deploying Hadoop in cloud can benefit Hadoop users. Our evaluation exhibits that various internal cloud attacks can bypass current Hadoop security mechanisms, and compromised Hadoop components can be used to threaten overall Hadoop. It is urgent to improve compromise resilience, Hadoop can maintain a relative high security level when parts of Hadoop are compromised. Hadoop has two vulnerabilities that can dramatically impact its compromise resilience. The vulnerabilities are the overloaded authentication key, and the lack of fine-grained access control at the data access level. We developed a security enhancement for a public cloud-based Hadoop, named SEHadoop, to improve the compromise resilience through enhancing isolation among Hadoop components and enforcing least access privilege for Hadoop processes. We have implemented the SEHadoop model, and demonstrated that SEHadoop fixes the above vulnerabilities with minimal or no run-time overhead, and effectively resists related attacks.

2017-03-07
Olabelurin, A., Veluru, S., Healing, A., Rajarajan, M..  2015.  Entropy clustering approach for improving forecasting in DDoS attacks. 2015 IEEE 12th International Conference on Networking, Sensing and Control. :315–320.

Volume anomaly such as distributed denial-of-service (DDoS) has been around for ages but with advancement in technologies, they have become stronger, shorter and weapon of choice for attackers. Digital forensic analysis of intrusions using alerts generated by existing intrusion detection system (IDS) faces major challenges, especially for IDS deployed in large networks. In this paper, the concept of automatically sifting through a huge volume of alerts to distinguish the different stages of a DDoS attack is developed. The proposed novel framework is purpose-built to analyze multiple logs from the network for proactive forecast and timely detection of DDoS attacks, through a combined approach of Shannon-entropy concept and clustering algorithm of relevant feature variables. Experimental studies on a cyber-range simulation dataset from the project industrial partners show that the technique is able to distinguish precursor alerts for DDoS attacks, as well as the attack itself with a very low false positive rate (FPR) of 22.5%. Application of this technique greatly assists security experts in network analysis to combat DDoS attacks.

2017-02-14
S. Chandran, Hrudya P, P. Poornachandran.  2015.  "An efficient classification model for detecting advanced persistent threat". 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2001-2009.

Among most of the cyber attacks that occured, the most drastic are advanced persistent threats. APTs are differ from other attacks as they have multiple phases, often silent for long period of time and launched by adamant, well-funded opponents. These targeted attacks mainly concentrated on government agencies and organizations in industries, as are those involved in international trade and having sensitive data. APTs escape from detection by antivirus solutions, intrusion detection and intrusion prevention systems and firewalls. In this paper we proposes a classification model having 99.8% accuracy, for the detection of APT.

2017-02-27
Dou, Huijing, Bian, Tingting.  2015.  An effective information filtering method based on the LTE network. 2015 4th International Conference on Computer Science and Network Technology (ICCSNT). 01:1428–1432.

With the rapid development of the information technology, more and more high-speed networks came out. The 4G LTE network as a recently emerging network has gradually entered the mainstream of the communication network. This paper proposed an effective content-based information filtering based on the 4G LTE high-speed network by combing the content-based filter and traditional simple filter. Firstly, raw information is pre-processed by five-tuple filter. Secondly, we determine the topics and character of the source data by key nearest neighbor text classification after minimum-risk Bayesian classification. Finally, the improved AdaBoost algorithm achieves the four-level content-based information filtering. The experiments reveal that the effective information filtering method can be applied to the network security, big data analysis and other fields. It has high research value and market value.

2017-02-14
E. Pisek, S. Abu-Surra, R. Taori, J. Dunham, D. Rajan.  2015.  "Enhanced Cryptcoding: Joint Security and Advanced Dual-Step Quasi-Cyclic LDPC Coding". 2015 IEEE Global Communications Conference (GLOBECOM). :1-7.

Data security has always been a major concern and a huge challenge for governments and individuals throughout the world since early times. Recent advances in technology, such as the introduction of cloud computing, make it even a bigger challenge to keep data secure. In parallel, high throughput mobile devices such as smartphones and tablets are designed to support these new technologies. The high throughput requires power-efficient designs to maintain the battery-life. In this paper, we propose a novel Joint Security and Advanced Low Density Parity Check (LDPC) Coding (JSALC) method. The JSALC is composed of two parts: the Joint Security and Advanced LDPC-based Encryption (JSALE) and the dual-step Secure LDPC code for Channel Coding (SLCC). The JSALE is obtained by interlacing Advanced Encryption System (AES)-like rounds and Quasi-Cyclic (QC)-LDPC rows into a single primitive. Both the JSALE code and the SLCC code share the same base quasi-cyclic parity check matrix (PCM) which retains the power efficiency compared to conventional systems. We show that the overall JSALC Frame-Error-Rate (FER) performance outperforms other cryptcoding methods by over 1.5 dB while maintaining the AES-128 security level. Moreover, the JSALC enables error resilience and has higher diffusion than AES-128.

2018-05-23
X. Tan, Z. Sun.  2015.  Environment-Aware Indoor Localization Using Magnetic Induction. 2015 IEEE Global Communications Conference (GLOBECOM). :1-6.
2017-03-08
Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.

2017-02-14
A. K. M. A., J. C. D..  2015.  "Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers". 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). :314-319.

Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.

2015-03-03
Abbas, W., Koutsoukos, X..  2015.  Efficient Complete Coverage Through Heterogeneous Sensing Nodes. Wireless Communications Letters, IEEE. 4:14-17.

We investigate the coverage efficiency of a sensor network consisting of sensors with circular sensing footprints of different radii. The objective is to completely cover a region in an efficient manner through a controlled (or deterministic) deployment of such sensors. In particular, it is shown that when sensing nodes of two different radii are used for complete coverage, the coverage density is increased, and the sensing cost is significantly reduced as compared to the homogeneous case, in which all nodes have the same sensing radius. Configurations of heterogeneous disks of multiple radii to achieve efficient circle coverings are presented and analyzed.

2017-10-27
Zhongjing Ma, Suli Zou, Xiangdong Liu, Ian Hiskens.  2015.  Efficient Coordination of Electric Vehicle Charging using a Progressive Second Price Auction. American Control Conference. :2999-3006.
An auction-based game is formulated for coordinating the charging of a population of electric vehicles (EVs) over a finite horizon. The proposed auction requires individual EVs to submit bid profiles that have dimension equal to two times the number of time-steps in the horizon. They compete for energy allocation at each time-step. Use of the progressive second price (PSP) auction mechanism ensures that incentive compatibility holds for the auction game. However, due to cross-elasticity between the charging time-steps, the marginal valuation of an individual EV at a particular time is determined by both the demand at that time and the total demand over the entire horizon. This difficulty is addressed by partitioning the allowable set of bid profiles according to the total desired energy over the entire horizon. It is shown that the efficient bid profile over the charging horizon is a Nash equilibrium of the underlying auction game. A dynamic update mechanism for the auction game is designed. A numerical example demonstrates that the auction system converges to the efficient Nash equilibrium.
2017-03-07
Amin, R., Islam, S. K. H., Biswas, G. P., Khan, M. K..  2015.  An efficient remote mutual authentication scheme using smart mobile phone over insecure networks. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

To establish a secure connection between a mobile user and a remote server, this paper presents a session key agreement scheme through remote mutual authentication protocol by using mobile application software(MAS). We analyzed the security of our protocol informally, which confirms that the protocol is secure against all the relevant security attacks including off-line identity-password guessing attacks, user-server impersonation attacks, and insider attack. In addition, the widely accepted simulator tool AVISPA simulates the proposed protocol and confirms that the protocol is SAFE under the OFMC and CL-AtSe back-ends. Our protocol not only provide strong security against the relevant attacks, but it also achieves proper mutual authentication, user anonymity, known key secrecy and efficient password change operation. The performance comparison is also performed, which ensures that the protocol is efficient in terms of computation and communication costs.

2017-03-08
Huang, J., Hou, D., Schuckers, S., Hou, Z..  2015.  Effect of data size on performance of free-text keystroke authentication. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–7.

Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.

Nemati, A., Feizi, S., Ahmadi, A., Haghiri, S., Ahmadi, M., Alirezaee, S..  2015.  An efficient hardware implementation of few lightweight block cipher. 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP). :273–278.

Radio-frequency identification (RFID) are becoming a part of our everyday life with a wide range of applications such as labeling products and supply chain management and etc. These smart and tiny devices have extremely constrained resources in terms of area, computational abilities, memory, and power. At the same time, security and privacy issues remain as an important problem, thus with the large deployment of low resource devices, increasing need to provide security and privacy among such devices, has arisen. Resource-efficient cryptographic incipient become basic for realizing both security and efficiency in constrained environments and embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a significant role as a building block for security systems. In 2014 Manoj Kumar et al proposed a new Lightweight block cipher named as FeW, which are suitable for extremely constrained environments and embedded systems. In this paper, we simulate and synthesize the FeW block cipher. Implementation results of the FeW cryptography algorithm on a FPGA are presented. The design target is efficiency of area and cost.