Biblio

Found 1333 results

Filters: First Letter Of Title is E  [Clear All Filters]
2022-06-14
Schneider, Madeleine, Aspinall, David, Bastian, Nathaniel D..  2021.  Evaluating Model Robustness to Adversarial Samples in Network Intrusion Detection. 2021 IEEE International Conference on Big Data (Big Data). :3343–3352.
Adversarial machine learning, a technique which seeks to deceive machine learning (ML) models, threatens the utility and reliability of ML systems. This is particularly relevant in critical ML implementations such as those found in Network Intrusion Detection Systems (NIDS). This paper considers the impact of adversarial influence on NIDS and proposes ways to improve ML based systems. Specifically, we consider five feature robustness metrics to determine which features in a model are most vulnerable, and four defense methods. These methods are tested on six ML models with four adversarial sample generation techniques. Our results show that across different models and adversarial generation techniques, there is limited consistency in vulnerable features or in effectiveness of defense method.
2022-12-01
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
2022-04-12
Furumoto, Keisuke, Umizaki, Mitsuhiro, Fujita, Akira, Nagata, Takahiko, Takahashi, Takeshi, Inoue, Daisuke.  2021.  Extracting Threat Intelligence Related IoT Botnet From Latest Dark Web Data Collection. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :138—145.
As it is easy to ensure the confidentiality of users on the Dark Web, malware and exploit kits are sold on the market, and attack methods are discussed in forums. Some services provide IoT Botnet to perform distributed denial-of-service (DDoS as a Service: DaaS), and it is speculated that the purchase of these services is made on the Dark Web. By crawling such information and storing it in a database, threat intelligence can be obtained that cannot otherwise be obtained from information on the Surface Web. However, crawling sites on the Dark Web present technical challenges. For this paper, we implemented a crawler that can solve these challenges. We also collected information on markets and forums on the Dark Web by operating the implemented crawler. Results confirmed that the dataset collected by crawling contains threat intelligence that is useful for analyzing cyber attacks, particularly those related to IoT Botnet and DaaS. Moreover, by uncovering the relationship with security reports, we demonstrated that the use of data collected from the Dark Web can provide more extensive threat intelligence than using information collected only on the Surface Web.
2022-04-19
A, Meharaj Begum, Arock, Michael.  2021.  Efficient Detection Of SQL Injection Attack(SQLIA) Using Pattern-based Neural Network Model. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :343–347.
Web application vulnerability is one of the major causes of cyber attacks. Cyber criminals exploit these vulnerabilities to inject malicious commands to the unsanitized user input in order to bypass authentication of the database through some cyber-attack techniques like cross site scripting (XSS), phishing, Structured Query Language Injection Attack (SQLIA), malware etc., Although many research works have been conducted to resolve the above mentioned attacks, only few challenges with respect to SQLIA could be resolved. Ensuring security against complete set of malicious payloads are extremely complicated and demanding. It requires appropriate classification of legitimate and injected SQL commands. The existing approaches dealt with limited set of signatures, keywords and symbols of SQL queries to identify the injected queries. This work focuses on extracting SQL injection patterns with the help of existing parsing and tagging techniques. Pattern-based tags are trained and modeled using Multi-layer Perceptron which significantly performs well in classification of queries with accuracy of 94.4% which is better than the existing approaches.
2022-05-05
Singh, Praneet, P, Jishnu Jaykumar, Pankaj, Akhil, Mitra, Reshmi.  2021.  Edge-Detect: Edge-Centric Network Intrusion Detection using Deep Neural Network. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1—6.
Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints and is set to become part of a multi-billion industry. The resource constraints in this novel network infrastructure tier constricts the deployment of existing Network Intrusion Detection System with Deep Learning models (DLM). We address this issue by developing a novel light, fast and accurate `Edge-Detect' model, which detects Distributed Denial of Service attack on edge nodes using DLM techniques. Our model can work within resource restrictions i.e. low power, memory and processing capabilities, to produce accurate results at a meaningful pace. It is built by creating layers of Long Short-Term Memory or Gated Recurrent Unit based cells, which are known for their excellent representation of sequential data. We designed a practical data science pipeline with Recurring Neural Network to learn from the network packet behavior in order to identify whether it is normal or attack-oriented. The model evaluation is from deployment on actual edge node represented by Raspberry Pi using current cybersecurity dataset (UNSW2015). Our results demonstrate that in comparison to conventional DLM techniques, our model maintains a high testing accuracy of 99% even with lower resource utilization in terms of cpu and memory. In addition, it is nearly 3 times smaller in size than the state-of-art model and yet requires a much lower testing time.
Huong, Truong Thu, Bac, Ta Phuong, Long, Dao Minh, Thang, Bui Doan, Luong, Tran Duc, Binh, Nguyen Thanh.  2021.  An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :533—539.

Internet of Things (IoT) and its applications are becoming commonplace with more devices, but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT architectures and classification algorithms, but none of them have paid enough attention to reducing the complexity. Our proposal in this paper is an edge-cloud architecture that fulfills the detection task right at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the cloud's workload. We also propose a multi-attack detection mechanism called LCHA (Low-Complexity detection solution with High Accuracy) , which has low complexity for deployment at the edge zone while still maintaining high accuracy. The performance of our proposed mechanism is compared with that of other machine learning and deep learning methods using the most updated BoT-IoT data set. The results show that LCHA outperforms other algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and NN in terms of complexity.

2022-04-26
Makarov, Artyom, Varfolomeev, Alexander A..  2021.  Extended Classification of Signature-only Signature Models. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2385–2389.

In this paper, we extend the existing classification of signature models by Cao. To do so, we present a new signature classification framework and migrate the original classification to build an easily extendable faceted signature classification. We propose 20 new properties, 7 property families, and 1 signature classification type. With our classification, theoretically, up to 11 541 420 signature classes can be built, which should cover almost all existing signature schemes.

2022-05-05
Gaikwad, Bipin, Prakash, PVBSS, Karmakar, Abhijit.  2021.  Edge-based real-time face logging system for security applications. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—6.
In this work, we have proposed a state-of-the-art face logging system that detects and logs high quality cropped face images of the people in real-time for security applications. Multiple strategies based on resolution, velocity and symmetry of faces have been applied to obtain best quality face images. The proposed system handles the issue of motion blur in the face images by determining the velocities of the detections. The output of the system is the face database, where four faces for each detected person are stored along with the time stamp and ID number tagged to it. The facial features are extracted by our system, which are used to search the person-of-interest instantly. The proposed system has been implemented in a docker container environment on two edge devices: the powerful NVIDIA Jetson TX2 and the cheaper NVIDIA Jetson N ano. The light and fast face detector (LFFD) used for detection, and ResN et50 used for facial feature extraction are optimized using TensorRT over these edge devices. In our experiments, the proposed system achieves the True Acceptance Rate (TAR) of 0.94 at False Acceptance Rate (FAR) of 0.01 while detecting the faces at 20–30 FPS on NVIDIA Jetson TX2 and about 8–10 FPS on NVIDIA Jetson N ano device. The advantage of our system is that it is easily deployable at multiple locations and also scalable based on application requirement. Thus it provides a realistic solution to face logging application as the query or suspect can be searched instantly, which may not only help in investigation of incidents but also in prevention of untoward incidents.
2022-05-23
Chang, Xinyu, Wu, Bian.  2021.  Effects of Immersive Spherical Video-based Virtual Reality on Cognition and Affect Outcomes of Learning: A Meta-analysis. 2021 International Conference on Advanced Learning Technologies (ICALT). :389–391.
With the advancement of portable head-mounted displays, interest in educational application of immersive spherical video-based virtual reality (SVVR) has been emerging. However, it remains unclear regarding the effects of immersive SVVR on cognitive and affective outcomes. In this study, we retrieved 58 learning outcomes from 16 studies. A meta-analysis was performed using the random effects model to calculate the effect size. Several important moderators were also examined such as control group treatment, learning outcome type, interaction functionality, content instruction, learning domain, and learner's stage. The results show that immersive SVVR is more effective than other instructional conditions with a medium effect size. The key findings of the moderator analysis are that immersive SVVR has a greater impact on affective outcomes, as well as under the conditions that learning system provides interaction functionality or integrates with content instruction before virtual exploratory learning.
2022-02-22
Ramalingam, M., Saranya, D., ShankarRam, R..  2021.  An Efficient and Effective Blockchain-based Data Aggregation for Voting System. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—4.
Blockchain is opening up new avenues for the development of new sorts of digital services. In this article, we'll employ the transparent Blockchain method to propose a system for collecting data from many sources and databases for use in local and national elections. The Blockchain-based system will be safe, trustworthy, and private. It will assist to know the overall count of the candidates who participated and it functions in the same way as people's faith in their governments does. Blockchain technology is the one that handles the actual vote. We use the secure hash algorithm for resolving this problem and tried to bring a solution through the usage of this booming technology. A centralized database in a blockchain system keeps track of the secure electronic interactions of users in a peer-to-peer network.
2022-06-06
Dimitriadis, Athanasios, Lontzetidis, Efstratios, Mavridis, Ioannis.  2021.  Evaluation and Enhancement of the Actionability of Publicly Available Cyber Threat Information in Digital Forensics. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :318–323.

Cyber threat information can be utilized to investigate incidents by leveraging threat-related knowledge from prior incidents with digital forensic techniques and tools. However, the actionability of cyber threat information in digital forensics has not yet been evaluated. Such evaluation is important to ascertain that cyber threat information is as actionable as it can be and to reveal areas of improvement. In this study, a dataset of cyber threat information products was created from well-known cyber threat information sources and its actionability in digital forensics was evaluated. The evaluation results showed a high level of cyber threat information actionability that still needs enhancements in supporting some widely present types of attacks. To further enhance the provision of actionable cyber threat information, the development of the new TREVItoSTIX Autopsy module is presented. TREVItoSTIX allows the expression of the findings of an incident investigation in the structured threat information expression format in order to be easily shared and reused in future digital forensics investigations.

2022-09-09
Langer, Martin, Heine, Kai, Bermbach, Rainer, Sibold, Dieter.  2021.  Extending the Network Time Security Protocol for Secure Communication between Time Server and Key Establishment Server. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—5.
This work describes a concept for extending the Network Time Security (NTS) protocol to enable implementation- independent communication between the NTS key establishment (NTS-KE) server and the connected time server(s). It Alls a specification gap left by RFC 8915 for securing the Network Time Protocol (NTP) and enables the centralized and public deployment of an NTS key management server that can support both secured NTP and secured PTP.
2022-05-05
Goyal, Jitendra, Ahmed, Mushtaq, Gopalani, Dinesh.  2021.  Empirical Study of Standard Elliptic Curve Domain Parameters for IoT Devices. 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1—6.
In recent times, security and privacy concerns associated with IoT devices have caught the attention of research community. The problem of securing IoT devices is immensely aggravating due to advancement in technology. These IoT devices are resource-constraint i.e. in terms of power, memory, computation, etc., so they are less capable to secure themselves. So we need a better approach to secure IoT devices within the limited resources. Several studies state that for these lightweight IoT devices Elliptic Curve Cryptography (ECC) suits perfectly. But there are several elliptic curve domain parameter standards, which may be used for different security levels. When any ECC based product is deployed then the selection of a suitable elliptic curve standard according to usability is become very important. So we have to choose one suitable standard domain parameter for the required security level. In this paper, two different elliptic curve standard domain parameters named secp256k1 and secp192k1 proposed by an industry consortium named Standards for Efficient Cryptography Group (SECG) [1] are implemented and then analyzed their performances metrics. The performance of each domain parameter is measured in computation time.
2022-05-10
Pham, Thanh V., Pham, Anh T..  2021.  Energy-Efficient Friendly Jamming for Physical Layer Security in Visible Light Communication. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This work studies an energy-efficient jamming scheme for enhancing physical layer security in visible light communication (VLC). We consider a VLC system where multiple LED luminaries are deployed together with a legitimate user (i.e., Bob) and passive eavesdroppers (i.e., Eves). In such a scenario, the closest LED luminary to Bob serves as the transmitter while the rest of the luminaries act as jammers transmitting artificial noise (AN) to possibly degrade the quality of Eves' channels. A joint design of precoder and AN is then investigated to maximize the energy efficiency (EE) of the communication channel to Bob while ensuring a certain amount of AN power to confuse Eves. To solve the design problem, we make use of a combination of the Dinkelbach and convex-concave procedure (CCCP), which guarantees to converge to a local optimum.
2022-09-16
Hu, Xiaoyan, Li, Yuanxin.  2021.  Event-Triggered Adaptive Fuzzy Asymptotic Tracking Control for Single Link Robot Manipulator with Prescribed Performance. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :144—149.
In this paper, the adaptive event-triggered asymptotic tracking control with guaranteed performance for a single link robot manipulator (SLRM) system driven by the brush DC motor is studied. Fuzzy logic systems (FLS) is used to approximate unknown nonlinear functions. By introducing a finite time performance function (FTPF), the tracking error of the system can converge to the compact set of the origin in finite time. In addition, by introducing the smooth function and some positive integral functions, combined with the boundary estimation method and adaptive backstepping technique, the asymptotic tracking control of the system is realized. Meanwhile, event-triggered mechanism is introduced to reduce the network resources of the system. Finally, a practical example is given to prove the effectiveness of the theoretical research.
2021-12-20
Cheng, Tingting, Niu, Ben, Zhang, Guangju, Wang, Zhenhua.  2021.  Event-Triggered Adaptive Command Filtered Asymptotic Tracking Control for a Class of Flexible Robotic Manipulators. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :353–359.
This work proposes an event-triggered adaptive asymptotic tracking control scheme for flexible robotic manipulators. Firstly, by employing the command filtered backstepping technology, the ``explosion of complexity'' problem is overcame. Then, the event-triggered strategy is utilized which makes that the control input is updated aperiodically when the event-trigger occurs. The utilized event-triggered mechanism reduces the transmission frequency of computer and saves computer resources. Moreover, it can be proved that all the variables in the closed-loop system are bounded and the tracking error converges asymptotically to zero. Finally, the simulation studies are included to show the effectiveness of the proposed control scheme.
2022-05-05
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
2021-12-20
Khammash, Mona, Tammam, Rawan, Masri, Abdallah, Awad, Ahmed.  2021.  Elliptic Curve Parameters Optimization for Lightweight Cryptography in Mobile-Ad-Hoc Networks. 2021 18th International Multi-Conference on Systems, Signals Devices (SSD). :63–69.
Satisfying security requirements for Mobile Ad-hoc Networks (MANETs) is a key challenge due to the limited power budget for the nodes composing those networks. Therefore, it is essential to exploit lightweight cryptographic algorithms to preserve the confidentiality of the messages being transmitted between different nodes in MANETs. At the heart of such algorithms lies the Elliptic Curve Cryptography (ECC). The importance of ECC lies in offering equivalent security with smaller key sizes, which results in faster computations, lower power consumption, as well as memory and bandwidth savings. However, when exploiting ECC in MANETs, it is essential to properly choose the parameters of ECC such that an acceptable level of confidentiality is achieved without entirely consuming the power budget of nodes. In addition, the delay of the communication should not abruptly increase. In this paper, we study the effect of changing the prime number use in ECC on power consumption, delay, and the security of the nodes in MANETs. Once a suitable prime number is chosen, a comparative analysis is conducted between two reactive routing protocols, namely, Ad-hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) in terms of power consummation and delay. Experimental results show that a prime number value of 197 for ECC alongside with DSR for routing preserve an acceptable level of security for MANETs with low average power consumption and low average delay in the communication.
2022-01-25
Meyer, Fabian, Gehrke, Christian, Schäfer, Michael.  2021.  Evaluating User Acceptance using WebXR for an Augmented Reality Information System. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :418—419.
Augmented Reality has a long history and has seen major technical advantages in the last years. With WebXR, a new web standard, Mobile Augmented Reality (MAR) applications are now available in the web browser. With our work, we implemented an Augmented Reality Information System and conducted a case study to evaluate the user acceptance of such an application build with WebXR. Our results indicate that the user acceptance regarding web-based MAR applications for our specific use case seems to be given. With our proposed architecture we also lay the foundation for other AR information systems.
2022-06-15
Kurt, Ahmet, Mercana, Suat, Erdin, Enes, Akkaya, Kemal.  2021.  Enabling Micro-payments on IoT Devices using Bitcoin Lightning Network. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
Lightning Network (LN) addresses the scalability problem of Bitcoin by leveraging off-chain transactions. Nevertheless, it is not possible to run LN on resource-constrained IoT devices due to its storage, memory, and processing requirements. Therefore, in this paper, we propose an efficient and secure protocol that enables an IoT device to use LN's functions through a gateway LN node. The idea is to involve the IoT device in LN operations with its digital signature by replacing original 2-of-2 multisignature channels with 3-of-3 multisignature channels. Our protocol enforces the LN gateway to request the IoT device's cryptographic signature for all operations on the channel. We evaluated the proposed protocol by implementing it on a Raspberry Pi for a toll payment scenario and demonstrated its feasibility and security.
2022-05-06
S, Sudersan, B, Sowmiya, V.S, Abhijith, M, Thangavel, P, Varalakshmi.  2021.  Enhanced DNA Cryptosystem for Secure Cloud Data Storage. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :337—342.
Cloud computing has revolutionized the way how users store, process, and use data. It has evolved over the years to put forward various sophisticated models that offer enhanced performance. The growth of electronic data stored in the Cloud has made it crucial to access data without data loss and leakage. Security threats still prevent significant corporations that use sensitive data to employ cloud computing to handle their data. Traditional cryptographic techniques like DES, AES, etc... provide data confidentiality but are computationally complex. To overcome such complexities, a unique field of cryptography known as DNA Cryptography came into existence. DNA cryptography is a new field of cryptography that utilizes the chemical properties of DNA for secure data encoding. DNA cryptographic algorithms are much faster than traditional cryptographic methods and can bring about greater security with lesser computational costs. In this paper, we have proposed an enhanced DNA cryptosystem involving operations such as encryption, encoding table generation, and decryption based on the chemical properties of DNA. The performance analysis has proven that the proposed DNA cryptosystem is secure and efficient in Cloud data storage.
2022-02-04
Chowdhury, Subhajit Dutta, Zhang, Gengyu, Hu, Yinghua, Nuzzo, Pierluigi.  2021.  Enhancing SAT-Attack Resiliency and Cost-Effectiveness of Reconfigurable-Logic-Based Circuit Obfuscation. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Logic locking is a well-explored defense mechanism against various types of hardware security attacks. Recent approaches to logic locking replace portions of a circuit with reconfigurable blocks such as look-up tables (LUTs) and switch boxes (SBs) to primarily achieve logic and routing obfuscation, respectively. However, these techniques may incur significant design overhead, and methods that can mitigate the implementation cost for a given security level are desirable. In this paper, we address this challenge by proposing an algorithm for deciding the location and inputs of the LUTs in LUT-based obfuscation to enhance security and reduce design overhead. We then introduce a locking method that combines LUTs with SBs to further robustify LUT-based obfuscation, largely independently of the specific LUT locations. We illustrate the effectiveness of the proposed approaches on a set of ISCAS benchmark circuits.
2021-12-20
Twardokus, Geoff, Rahbari, Hanif.  2021.  Evaluating V2V Security on an SDR Testbed. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–3.
We showcase the capabilities of V2Verifier, a new open-source software-defined radio (SDR) testbed for vehicle-to-vehicle (V2V) communications security, to expose the strengths and vulnerabilities of current V2V security systems based on the IEEE 1609.2 standard. V2Verifier supports both major V2V technologies and facilitates a broad range of experimentation with upper- and lower-layer attacks using a combination of SDRs and commercial V2V on-board units (OBUs). We demonstrate two separate attacks (jamming and replay) against Dedicated Short Range Communication (DSRC) and Cellular Vehicle-to-Everything (C-V2X) technologies, experimentally quantifying the threat posed by these types of attacks. We also use V2Verifier's open-source implementation to show how the 1609.2 standard can effectively mitigate certain types of attacks (e.g., message replay), facilitating further research into the security of V2V.
2022-04-19
McManus, Maxwell, Guan, Zhangyu, Bentley, Elizabeth Serena, Pudlewski, Scott.  2021.  Experimental Analysis of Cross-Layer Sensing for Protocol-Agnostic Packet Boundary Recognition. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Radio-frequency (RF) sensing is a key technology for designing intelligent and secure wireless networks with high spectral efficiency and environment-aware adaptation capabilities. However, existing sensing techniques can extract only limited information from RF signals or assume that the RF signals are generated by certain known protocols. As a result, their applications are limited if proprietary protocols or encryption methods are adopted, or in environments subject to errors such as unintended interference. To address this challenge, we study protocol-agnostic cross-layer sensing to extract high-layer protocol information from raw RF samples without any a priori knowledge of the protocols. First, we present a framework for protocol-agnostic sensing for over-the-air (OTA) RF signals, by taking packet boundary recognition (PBR) as an example. The framework consists of three major components: OTA Signal Generator, Agnostic RF Sink, and Ground Truth Generator. Then, we develop a software-defined testbed using USRP SDRs, with eleven benchmark statistical algorithms implemented in the Agnostic RF Sink, including Kullback-Leibler divergence and cross-power spectral density, among others. Finally, we test the effectiveness of these statistical algorithms in PBR on OTA RF samples, considering a wide variety of transmission parameters, including modulation type, transmission distance, and packet length. It is found that none of these benchmark statistical algorithms can achieve consistently high PBR rate, and new algorithms are required particularly in next-generation low-latency wireless systems.
2022-01-31
Stevens, Clay, Soundy, Jared, Chan, Hau.  2021.  Exploring the Efficiency of Self-Organizing Software Teams with Game Theory. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :36–40.
Over the last two decades, software development has moved away from centralized, plan-based management toward agile methodologies such as Scrum. Agile methodologies are founded on a shared set of core principles, including self-organizing software development teams. Such teams are promoted as a way to increase both developer productivity and team morale, which is echoed by academic research. However, recent works on agile neglect to consider strategic behavior among developers, particularly during task assignment-one of the primary functions of a self-organizing team. This paper argues that self-organizing software teams could be readily modeled using game theory, providing insight into how agile developers may act when behaving strategically. We support our argument by presenting a general model for self-assignment of development tasks based on and extending concepts drawn from established game theory research. We further introduce the software engineering community to two metrics drawn from game theory-the price-of-stability and price-of-anarchy-which can be used to gauge the efficiencies of self-organizing teams compared to centralized management. We demonstrate how these metrics can be used in a case study evaluating the hypothesis that smaller teams self-organize more efficiently than larger teams, with conditional support for that hypothesis. Our game-theoretic framework provides new perspective for the software engineering community, opening many avenues for future research.