Biblio
Cyber resilience has become a strategic point of information security in recent years. In the face of complex attack means and severe internal and external threats, it is difficult to achieve 100% protection against information systems. It is necessary to enhance the continuous service of information systems based on network resiliency and take appropriate compensation measures in case of protection failure, to ensure that the mission can still be achieved under attack. This paper combs the definition, cycle, and state of cyber resilience, and interprets the cyber resiliency engineering framework, to better understand cyber resilience. In addition, we also discuss the evolution of security architecture and analyze the impact of cyber resiliency on security architecture. Finally, the strategies and schemes of enhancing cyber resilience represented by zero trust and endogenous security are discussed.
To share the recorded ECG data with the cardiologist in Golden Hours in an efficient and secured manner via tele-cardiology may save the lives of the population residing in rural areas of a country. This paper proposes an encryption-authentication scheme for secure the ECG data. The main contribution of this work is to generate a one-time padding key and deploying an encryption algorithm in authentication mode to achieve encryption and authentication. This is achieved by a water cycle optimization algorithm that generates a completely random one-time padding key and Triple Data Encryption Standard (3DES) algorithm for encrypting the ECG data. To validate the accuracy of the proposed encryption authentication scheme, experimental results were performed on standard ECG data and various performance parameters were calculated for it. The results show that the proposed algorithm improves security and passes the statistical key generation test.
The mechanism of Fog computing is a distributed infrastructure to provide the computations as same as cloud computing. The fog computing environment provides the storage and processing of data in a distributed manner based on the locality. Fog servicing is better than cloud service for working with smart devices and users in a same locale. However the fog computing will inherit the features of the cloud, it also suffers from many security issues as cloud. One such security issue is authentication with efficient key management between the communicating entities. In this paper, we propose a secured two-way authentication scheme with efficient management of keys between the user mobile device and smart devices under the control of the fog server. We made use of operations such as one-way hash (SHA-512) functions, bitwise XOR, and fuzzy extractor function to make the authentication system to be better. We have verified the proposed scheme for its security effectiveness by using a well-used analysis tool ProVerif. We also proved that it can resist multiple attacks and the security overhead is reduced in terms of computation and communication cost as compared to the existing methods.