Biblio

Found 314 results

Filters: First Letter Of Title is G  [Clear All Filters]
2020-11-04
Švábenský, V., Vykopal, J..  2018.  Gathering Insights from Teenagers’ Hacking Experience with Authentic Cybersecurity Tools. 2018 IEEE Frontiers in Education Conference (FIE). :1—4.

This Work-In-Progress Paper for the Innovative Practice Category presents a novel experiment in active learning of cybersecurity. We introduced a new workshop on hacking for an existing science-popularizing program at our university. The workshop participants, 28 teenagers, played a cybersecurity game designed for training undergraduates and professionals in penetration testing. Unlike in learning environments that are simplified for young learners, the game features a realistic virtual network infrastructure. This allows exploring security tools in an authentic scenario, which is complemented by a background story. Our research aim is to examine how young players approach using cybersecurity tools by interacting with the professional game. A preliminary analysis of the game session showed several challenges that the workshop participants faced. Nevertheless, they reported learning about security tools and exploits, and 61% of them reported wanting to learn more about cybersecurity after the workshop. Our results support the notion that young learners should be allowed more hands-on experience with security topics, both in formal education and informal extracurricular events.

2019-01-21
Fahrbach, M., Miller, G. L., Peng, R., Sawlani, S., Wang, J., Xu, S. C..  2018.  Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). :101–112.

Motivated by the study of matrix elimination orderings in combinatorial scientific computing, we utilize graph sketching and local sampling to give a data structure that provides access to approximate fill degrees of a matrix undergoing elimination in polylogarithmic time per elimination and query. We then study the problem of using this data structure in the minimum degree algorithm, which is a widely-used heuristic for producing elimination orderings for sparse matrices by repeatedly eliminating the vertex with (approximate) minimum fill degree. This leads to a nearly-linear time algorithm for generating approximate greedy minimum degree orderings. Despite extensive studies of algorithms for elimination orderings in combinatorial scientific computing, our result is the first rigorous incorporation of randomized tools in this setting, as well as the first nearly-linear time algorithm for producing elimination orderings with provable approximation guarantees. While our sketching data structure readily works in the oblivious adversary model, by repeatedly querying and greedily updating itself, it enters the adaptive adversarial model where the underlying sketches become prone to failure due to dependency issues with their internal randomness. We show how to use an additional sampling procedure to circumvent this problem and to create an independent access sequence. Our technique for decorrelating interleaved queries and updates to this randomized data structure may be of independent interest.

2019-09-12
Prakruthi Karuna, Hemant Purohit, Rajesh Ganesan, Sushil Jajodia.  2018.  Generating Hard to Comprehend Fake Documents for Defensive Cyber Deception. IEEE Xplore Digital Library. 33(5):16-25.

Existing approaches to cyber defense have been inadequate at defending the targets from advanced persistent threats (APTs). APTs are stealthy and orchestrated attacks, which target both corporations and governments to exfiltrate important data. In this paper, we present a novel comprehensibility manipulation framework (CMF) to generate a haystack of hard to comprehend fake documents, which can be used for deceiving attackers and increasing the cost of data exfiltration by wasting their time and resources. CMF requires an original document as input and generates fake documents that are both believable and readable for the attacker, possess no important information, and are hard to comprehend. To evaluate CMF, we experimented with college aptitude tests and compared the performance of many readers on separate reading comprehension exercises with fake and original content. Our results showed a statistically significant difference in the correct responses to the same questions across the fake and original exercises, thus validating the effectiveness of CMF operations to mislead.

2018-06-07
Rullo, Antonino, Midi, Daniele, Serra, Edoardo, Bertino, Elisa.  2017.  A Game of Things: Strategic Allocation of Security Resources for IoT. Proceedings of the Second International Conference on Internet-of-Things Design and Implementation. :185–190.
In many Internet of Thing (IoT) application domains security is a critical requirement, because malicious parties can undermine the effectiveness of IoT-based systems by compromising single components and/or communication channels. Thus, a security infrastructure is needed to ensure the proper functioning of such systems even under attack. However, it is also critical that security be at a reasonable resource and energy cost, as many IoT devices may not have sufficient resources to host expensive security tools. In this paper, we focus on the problem of efficiently and effectively securing IoT networks by carefully allocating security tools. We model our problem according to game theory, and provide a Pareto-optimal solution, in which the cost of the security infrastructure, its energy consumption, and the probability of a successful attack, are minimized. Our experimental evaluation shows that our technique improves the system robustness in terms of packet delivery rate for different network topologies.
2018-09-05
Sajjad, Imran, Sharma, Rajnikant, Gerdes, Ryan.  2017.  A Game-Theoretic Approach and Evaluation of Adversarial Vehicular Platooning. Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles. :35–41.
In this paper, we consider an attack on a string of automated vehicles, or platoons, from a game-theoretic standpoint. Game theory enables us to ask the question of optimality in an adversarial environment; what is the optimal strategy that an attacker can use to disrupt the operation of automated vehicles, considering that the defenders are also optimally trying to maintain normal operation. We formulate a zero-sum game and find optimal controllers for different game parameters. A platoon is then simulated and its closed loop stability is then evaluated in the presence of an optimal attack. It is shown that with the constraint of optimality, the attacker cannot significantly degrade the stability of a vehicle platoon in nominal cases. It is motivated that in order to have an optimal solution that is nearly unstable, the game has to be formulated almost unfairly in favor of the attacker.
2017-10-27
Jonathon Martin, Ian Hiskens.  2017.  Generalized Line Loss Relaxation in Polar Voltage Coordinates. IEEE Transactions on Power Systems.
It is common for power system behavior to be expressed in terms of polar voltage coordinates. When applied in optimization settings, loss formulations in polar voltage coordinates typically assume that voltage magnitudes are fixed. In reality, voltage magnitudes vary and may have an appreciable effect on losses. This paper proposes a systematic approach to incorporating the effects of voltage magnitude changes into a linear relaxation of the losses on a transmission line. This approach affords greater accuracy when describing losses around a base voltage condition as compared to previous linear and piecewise linear methods. It also better captures the true behavior of losses at conditions away from the flat voltage profile.
2018-02-15
Han, Shuchu, Hu, Yifan, Skiena, Steven, Coskun, Baris, Liu, Meizhu, Qin, Hong, Perez, Jaime.  2017.  Generating Look-alike Names For Security Challenges. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :57–67.
Motivated by the need to automatically generate behavior-based security challenges to improve user authentication for web services, we consider the problem of large-scale construction of realistic-looking names to serve as aliases for real individuals. We aim to use these names to construct security challenges, where users are asked to identify their real contacts among a presented pool of names. We seek these look-alike names to preserve name characteristics like gender, ethnicity, and popularity, while being unlinkable back to the source individual, thereby making the real contacts not easily guessable by attackers. To achive this, we introduce the technique of distributed name embeddings, representing names in a high-dimensional space such that distance between name components reflects the degree of cultural similarity between these strings. We present different approaches to construct name embeddings from contact lists observed at a large web-mail provider, and evaluate their cultural coherence. We demonstrate that name embeddings strongly encode gender and ethnicity, as well as name popularity. We applied this algorithm to generate imitation names in email contact list challenge. Our controlled user study verified that the proposed technique reduced the attacker's success rate to 26.08%, indistinguishable from random guessing, compared to a success rate of 62.16% from previous name generation algorithms. Finally, we use these embeddings to produce an open synthetic name resource of 1 million names for security applications, constructed to respect both cultural coherence and U.S. census name frequencies.
2018-09-28
Abdelbari, Hassan, Shafi, Kamran.  2017.  A Genetic Programming Ensemble Method for Learning Dynamical System Models. Proceedings of the 8th International Conference on Computer Modeling and Simulation. :47–51.
Modelling complex dynamical systems plays a crucial role to understand several phenomena in different domains such as physics, engineering, biology and social sciences. In this paper, a genetic programming ensemble method is proposed to learn complex dynamical systems' underlying mathematical models, represented as differential equations, from systems' time series observations. The proposed method relies on decomposing the modelling space based on given variable dependencies. An ensemble of learners is then applied in this decomposed space and their output is combined to generate the final model. Two examples of complex dynamical systems are used to test the performance of the proposed methodology where the standard genetic programming method has struggled to find matching model equations. The empirical results show the effectiveness of the proposed methodology in learning closely matching structure of almost all system equations.
2018-01-10
Xie, P., Feng, J., Cao, Z., Wang, J..  2017.  GeneWave: Fast authentication and key agreement on commodity mobile devices. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Device-to-device (D2D) communication is widely used for mobile devices and Internet of Things (IoT). Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then we derive the initial acoustic channel response (ACR) for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easy-to-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10x faster than the state-of-the-art approach.
2018-08-23
Yu, Chenhan D., Levitt, James, Reiz, Severin, Biros, George.  2017.  Geometry-oblivious FMM for Compressing Dense SPD Matrices. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. :53:1–53:14.
We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, or "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in N log N or even N time, where N is the matrix size. Compression requires N log N storage and work. In general, our scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix entries have been generated is required, thus the term "geometry-oblivious." Also, we introduce a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization barriers. We present results on the Intel Knights Landing and Haswell architectures, and on the NVIDIA Pascal architecture for a variety of matrices.
2018-09-12
Miura, Ryosuke, Takano, Yuuki, Miwa, Shinsuke, Inoue, Tomoya.  2017.  GINTATE: Scalable and Extensible Deep Packet Inspection System for Encrypted Network Traffic: Session Resumption in Transport Layer Security Communication Considered Harmful to DPI. Proceedings of the Eighth International Symposium on Information and Communication Technology. :234–241.
Deep packet inspection (DPI) is a basic monitoring technology, which realizes network traffic control based on application payload. The technology is used to prevent threats (e.g., intrusion detection systems, firewalls) and extract information (e.g., content filtering systems). Moreover, transport layer security (TLS) monitoring is required because of the increasing use of the TLS protocol, particularly by hypertext transfer protocol secure (HTTPS). TLS monitoring is different from TCP monitoring in two aspects. First, monitoring systems cannot inspect the content in TLS communication, which is encrypted. Second, TLS communication is a session unit composed of one or more TCP connections. In enterprise networks, dedicated TLS proxies are deployed to perform TLS monitoring. However, the proxies cannot be used when monitored devices are unable to use a custom certificate. Additionally, these networks contain problems of scale and complexity that affect the monitoring. Therefore, the DPI processing using another method requires high-speed processing and various protocol analyses across TCP connections in TLS monitoring. However, it is difficult to realize both simultaneously. We propose GINTATE, which decrypts TLS communication using shared keys and monitors the results. GINTATE is a scalable architecture that uses distributed computing and considers relational sessions across multiple TCP connections in TLS communication. Additionally, GINTATE achieves DPI processing by adding an extensible analysis module. By comparing GINTATE against other systems, we show that it can perform DPI processing by managing relational sessions via distributed computing and that it is scalable.
2018-05-01
Fraj, R. Ben, Beroulle, V., Fourty, N., Meddeb, A..  2017.  A Global Approach for the Improvement of UHF RFID Safety and Security. 2017 12th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Radio Frequency Identification (RFID) devices are widely used in many domains such as tracking, marking and management of goods, smart houses (IoT), supply chains, etc. However, there is a big number of challenges which must still be overcome to ensure RFID security and privacy. In addition, due to the low cost and low consumption power of UHF RFID tags, communications between tags and readers are not robust. In this paper, we present our approach to evaluate at the same time the security and the safety of UHF RFID systems in order to improve them. First, this approach allows validating UHF RFID systems by simulation of the system behavior in presence of faults in a real environment. Secondly, evaluating the system robustness and the security of the used protocols, this approach will enable us to propose the development of new more reliable and secure protocols. Finally, it leads us to develop and validate new low cost and secure tag hardware architectures.
2018-09-28
Ushijima-Mwesigwa, Hayato, Negre, Christian F. A., Mniszewski, Susan M..  2017.  Graph Partitioning Using Quantum Annealing on the D-Wave System. Proceedings of the Second International Workshop on Post Moores Era Supercomputing. :22–29.
Graph partitioning (GP) applications are ubiquitous throughout mathematics, computer science, chemistry, physics, bio-science, machine learning, and complex systems. Post Moore's era supercomputing has provided us an opportunity to explore new approaches for traditional graph algorithms on quantum computing architectures. In this work, we explore graph partitioning using quantum annealing on the D-Wave 2X machine. Motivated by a recently proposed graph-based electronic structure theory applied to quantum molecular dynamics (QMD) simulations, graph partitioning is used for reducing the calculation of the density matrix into smaller subsystems rendering the calculation more computationally efficient. Unconstrained graph partitioning as community clustering based on the modularity metric can be naturally mapped into the Hamiltonian of the quantum annealer. On the other hand, when constraints are imposed for partitioning into equal parts and minimizing the number of cut edges between parts, a quadratic unconstrained binary optimization (QUBO) reformulation is required. This reformulation may employ the graph complement to fit the problem in the Chimera graph of the quantum annealer. Partitioning into 2 parts and k parts concurrently for arbitrary k are demonstrated with benchmark graphs, random graphs, and small material system density matrix based graphs. Results for graph partitioning using quantum and hybrid classical-quantum approaches are shown to be comparable to current "state of the art" methods and sometimes better.
2018-09-05
Ouaissa, Mariya, Rhattoy, A., Lahmer, M..  2017.  Group Access Authentication of Machine to Machine Communications in LTE Networks. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :50:1–50:5.
Today Machine to Machine (M2M) communications are very expanded in many application areas. M2M devices are likely to be small and able to operate for long periods and transmit data through wireless links, it is also defined as machine type communication (MTC) in Release 10 of the 3GPP "3rd Generation Partnership Project". Recently, most research has focused on congestion control, sensing information and control technologies and resource management, etc, but there are not many studies on the security aspects. Indeed, M2M communications and equipments may be exposed to different types of attacks (physical attacks on equipment and recovery of sensitive data, configurations attacks to compromise the software, attacks on the communications protocol, etc). In this article we introduce security into the M2M architecture and discuss the most important question of security, which is the group access authentication by modifying existing authentication protocols, such as group authentication and key agreement protocol used to resolve the group access authentication for M2M.
2018-09-28
Emura, Keita, Hayashi, Takuya, Ishida, Ai.  2017.  Group Signatures with Time-bound Keys Revisited: A New Model and an Efficient Construction. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :777–788.
Chu et al. (ASIACCS 2012) proposed group signature with time-bound keys (GS-TBK) where each signing key is associated to an expiry time τ. In addition to prove the membership of the group, a signer needs to prove that the expiry time has not passed, i.e., t\textbackslashtextlessτ where t is the current time. A signer whose expiry time has passed is automatically revoked, and this revocation is called natural revocation. Simultaneously, signers can be revoked before their expiry times have passed due to the compromise of the credential. This revocation is called premature revocation. A nice property of the Chu et al. proposal is that the size of revocation lists can be reduced compared to those of Verifier-Local Revocation (VLR) group signature schemes, by assuming that natural revocation accounts for most of signer revocations in practice, and prematurely revoked signers are only a small fraction. In this paper, we point out that the definition of traceability of Chu et al. did not capture unforgeability of expiry time of signing keys which guarantees that no adversary who has a signing key associated to an expiry time τ can compute a valid signature after τ has passed. We introduce a security model that captures unforgeability, and propose a GS-TBK scheme secure in the new model. Our scheme also provides the constant signing costs whereas those of the previous schemes depend on the bit-length of the time representation. Finally, we give implementation results, and show that our scheme is feasible in practical settings.
2017-12-20
Sevilla, S., Garcia-Luna-Aceves, J. J., Sadjadpour, H..  2017.  GroupSec: A new security model for the web. 2017 IEEE International Conference on Communications (ICC). :1–6.
The de facto approach to Web security today is HTTPS. While HTTPS ensures complete security for clients and servers, it also interferes with transparent content-caching at middleboxes. To address this problem and support both security and caching, we propose a new approach to Web security and privacy called GroupSec. The key innovation of GroupSec is that it replaces the traditional session-based security model with a new model based on content group membership. We introduce the GroupSec security model and show how HTTP can be easily adapted to support GroupSec without requiring changes to browsers, servers, or middleboxes. Finally, we present results of a threat analysis and performance experiments which show that GroupSec achieves notable performance benefits at the client and server while remaining as secure as HTTPS.
2018-03-26
Hosseinpourpia, M., Oskoei, M. A..  2017.  GA Based Parameter Estimation for Multi-Faceted Trust Model of Recommender Systems. 2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :160–165.

Recommender system is to suggest items that might be interest of the users in social networks. Collaborative filtering is an approach that works based on similarity and recommends items liked by other similar users. Trust model adopts users' trust network in place of similarity. Multi-faceted trust model considers multiple and heterogeneous trust relationship among the users and recommend items based on rating exist in the network of trustees of a specific facet. This paper applies genetic algorithm to estimate parameters of multi-faceted trust model, in which the trust weights are calculated based on the ratings and the trust network for each facet, separately. The model was built on Epinions data set that includes consumers' opinion, rating for items and the web of trust network. It was used to predict users' rating for items in different facets and root mean squared of prediction error (RMSE) was considered as a measure of performance. Empirical evaluations demonstrated that multi-facet models improve performance of the recommender system.

2018-05-17
2018-01-10
Wu, Xiaotong, Dou, Wanchun, Ni, Qiang.  2017.  Game Theory Based Privacy Preserving Analysis in Correlated Data Publication. Proceedings of the Australasian Computer Science Week Multiconference. :73:1–73:10.

Privacy preserving on data publication has been an important research field over the past few decades. One of the fundamental challenges in privacy preserving data publication is the trade-off problem between privacy and utility of the single and independent data set. However, recent research works have shown that the advanced privacy mechanism, i.e., differential privacy, is vulnerable when multiple data sets are correlated. In this case, the trade-off problem between privacy and utility is evolved into a game problem, in which the payoff of each player is dependent not only on his privacy parameter, but also on his neighbors' privacy parameters. In this paper, we firstly present the definition of correlated differential privacy to evaluate the real privacy level of a single data set influenced by the other data sets. Then, we construct a game model of multiple players, who each publishes the data set sanitized by differential privacy. Next, we analyze the existence and uniqueness of the pure Nash Equilibrium and demonstrate the sufficient conditions in the game. Finally, we refer to a notion, i.e., the price of anarchy, to evaluate efficiency of the pure Nash Equilibrium.

2018-05-17
Li, Nan, Zhang, Mengxuan, Yildiz, Yildiray, Kolmanovsky, Ilya, Girard, Anouck R.  2017.  Game theory based traffic modeling for calibration of automated driving algorithms. Proceedings of Workshop on Development, Testing and Verification of ADAS and ADF.
2018-02-02
Qi, C., Wu, J., Chen, H., Yu, H., Hu, H., Cheng, G..  2017.  Game-Theoretic Analysis for Security of Various Software-Defined Networking (SDN) Architectures. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.

Security evaluation of diverse SDN frameworks is of significant importance to design resilient systems and deal with attacks. Focused on SDN scenarios, a game-theoretic model is proposed to analyze their security performance in existing SDN architectures. The model can describe specific traits in different structures, represent several types of information of players (attacker and defender) and quantitatively calculate systems' reliability. Simulation results illustrate dynamic SDN structures have distinct security improvement over static ones. Besides, effective dynamic scheduling mechanisms adopted in dynamic systems can enhance their security further.

2018-10-26
Xu, Zhiheng, Zhu, Quanyan.  2017.  A Game-Theoretic Approach to Secure Control of Communication-Based Train Control Systems Under Jamming Attacks. Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles. :27–34.

To meet the growing railway-transportation demand, a new train control system, communication-based train control (CBTC) system, aims to maximize the ability of train lines by reducing the headway of each train. However, the wireless communications expose the CBTC system to new security threats. Due to the cyber-physical nature of the CBTC system, a jamming attack can damage the physical part of the train system by disrupting the communications. To address this issue, we develop a secure framework to mitigate the impact of the jamming attack based on a security criterion. At the cyber layer, we apply a multi-channel model to enhance the reliability of the communications and develop a zero-sum stochastic game to capture the interactions between the transmitter and jammer. We present analytical results and apply dynamic programming to find the equilibrium of the stochastic game. Finally, the experimental results are provided to evaluate the performance of the proposed secure mechanism.

2018-07-06
Zhang, R., Zhu, Q..  2017.  A game-theoretic defense against data poisoning attacks in distributed support vector machines. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :4582–4587.

With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.

2018-05-23
2017-12-20
Kumar, S. A., Kumar, N. R., Prakash, S., Sangeetha, K..  2017.  Gamification of internet security by next generation CAPTCHAs. 2017 International Conference on Computer Communication and Informatics (ICCCI). :1–5.

CAPTCHA is a type of challenge-response test to ensure that the response is only generated by humans and not by computerized robots. CAPTCHA are getting harder as because usage of latest advanced pattern recognition and machine learning algorithms are capable of solving simpler CAPTCHA. However, some enhancement procedures make the CAPTCHAs too difficult to be recognized by the human. This paper resolves the problem by next generation human-friendly mini game-CAPTCHA for quantifying the usability of CAPTCHAs.