Biblio
With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.
The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.
Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.
Cross layer based approaches are increasingly becoming popular in Manet (Mobile Adhoc Network). As Manet are constrained with issues as low battery, limited bandwidth, link breakage and dynamic topology, cross layer based designs are trying to remove such barriers and trying to make Manet more scalable. Cross layer designs are also facing attacking problem and ensuring the security of network to defend the attack is must. In this paper we discuss about technique to optimize the performance by minimizing delay and overhead of secure cross layer routing protocol. We have designed SCLPC (Secure cross layer based Power control) protocol. But when security is imposed using AASR (Authenticated and anonymous secure routing), the network metrics as end to end delay and control overhead is disturbed. To optimize the network performance here we proposed OSCLPC (Optimized secure cross layer based power control protocol). The proposed OSCLPC has been evaluated using SHORT (Self healing and optimizing route technique). The OSCLPC is simulated in ns2 and it is giving the better performance compared with SCLPC.
The capability of executing so-called smart contracts in a decentralised manner is one of the compelling features of modern blockchains. Smart contracts are fully fledged programs which cannot be changed once deployed to the blockchain. They typically implement the business logic of distributed apps and carry billions of dollars worth of coins. In that respect, it is imperative that smart contracts are correct and have no vulnerabilities or bugs. However, research has identified different classes of vulnerabilities in smart contracts, some of which led to prominent multi-million dollar fraud cases. In this paper we focus on vulnerabilities related to integer bugs, a class of bugs that is particularly difficult to avoid due to some characteristics of the Ethereum Virtual Machine and the Solidity programming language. In this paper we introduce Osiris – a framework that combines symbolic execution and taint analysis, in order to accurately find integer bugs in Ethereum smart contracts. Osiris detects a greater range of bugs than existing tools, while providing a better specificity of its detection. We have evaluated its performance on a large experimental dataset containing more than 1.2 million smart contracts. We found that 42,108 contracts contain integer bugs. Besides being able to identify several vulnerabilities that have been reported in the past few months, we were also able to identify a yet unknown critical vulnerability in a couple of smart contracts that are currently deployed on the Ethereum blockchain.
With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.
Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.
Inverting human factors can aid in cyber defense by flipping well-known guidelines and using them to degrade and disrupt the performance of a cyber attacker. There has been significant research on how we perform cyber defense tasks and how we should present information to operators, cyber defenders, and analysts to make them more efficient and more effective. We can actually create these situations just as easily as we can mitigate them. Oppositional human factors are a new way to apply well-known research on human attention allocation to disrupt potential cyber attackers and provide much-needed asymmetric benefits to the defender.
Blockchains are one solution for secure distributed interaction, but security vulnerabilities have already been exposed in existing programs. Obsidian, a new blockchain programming language, seeks to prevent some of these vulnerabilities using typestate and linearity. We evaluate the current design of Obsidian by implementing a blockchain application for parametric insurance as a case study. We compare this implementation to one written in Solidity, and find that Obsidian can provide stronger safety guarantees.
Blockchains are one solution for secure distributed interaction, but security vulnerabilities have already been exposed in existing programs. Obsidian, a new blockchain programming language, seeks to prevent some of these vulnerabilities using typestate and linearity. We evaluate the current design of Obsidian by implementing a blockchain application for parametric insurance as a case study. We compare this implementation to one written in Solidity, and find that Obsidian can provide stronger safety guarantees.
Hash message authentication is a fundamental building block of many networking security protocols such as SSL, TLS, FTP, and even HTTPS. The sponge-based SHA-3 hashing algorithm is the most recently developed hashing function as a result of a NIST competition to find a new hashing standard after SHA-1 and SHA-2 were found to have collisions, and thus were considered broken. We used Xilinx High-Level Synthesis to develop an optimized and pipelined version of the post-quantum-secure SHA-3 hash message authentication code (HMAC) which is capable of computing a HMAC every 280 clock-cycles with an overall throughput of 604 Mbps. We cover the general security of sponge functions in both a classical and quantum computing standpoint for hash functions, and offer a general architecture for HMAC computation when sponge functions are used.
Mining for crypto currencies is usually performed on high-performance single purpose hardware or GPUs. However, mining can be easily parallelized and distributed over many less powerful systems. Cryptojacking is a new threat on the Internet and describes code included in websites that uses a visitor's CPU to mine for crypto currencies without the their consent. This paper introduces MiningHunter, a novel web crawling framework which is able to detect mining scripts even if they obfuscate their malicious activities. We scanned the Alexa Top 1 million websites for cryptojacking, collected more than 13,400,000 unique JavaScript files with a total size of 246 GB and found that 3,178 websites perform cryptocurrency mining without their visitors' consent. Furthermore, MiningHunter can be used to provide an in-depth analysis of cryptojacking campaigns. To show the feasibility of the proposed framework, three of such campaigns are examined in detail. Our results provide the most comprehensive analysis to date of the spread of cryptojacking on the Internet.
Maliciously-injected power load, a.k.a. power attack, has recently surfaced as a new egregious attack vector for dangerously compromising the data center availability. This paper focuses on the emerging threat of power attacks in a multi-tenant colocation data center, an important type of data center where multiple tenants house their own servers and share the power distribution system. Concretely, we discover a novel physical side channel –- a voltage side channel –- which leaks the benign tenants' power usage information at runtime and helps an attacker precisely time its power attacks. The key idea we exploit is that, due to the Ohm's Law, the high-frequency switching operation (40\textasciitilde100kHz) of the power factor correction circuit universally built in today's server power supply units creates voltage ripples in the data center power lines. Importantly, without overlapping the grid voltage in the frequency domain, the voltage ripple signals can be easily sensed by the attacker to track the benign tenants' runtime power usage and precisely time its power attacks. We evaluate the timing accuracy of the voltage side channel in a real data center prototype, demonstrating that the attacker can extract benign tenants' power pattern with a great accuracy (correlation coefficient = 0.90+) and utilize 64% of all the attack opportunities without launching attacks randomly or consecutively. Finally, we highlight a few possible defense strategies and extend our study to more complex three-phase power distribution systems used in large multi-tenant data centers.
Most of the countries evaluate their energy networks in terms of national security and define as critical infrastructure. Monitoring and controlling of these systems are generally provided by Industrial Control Systems (ICSs) and/or Supervisory Control and Data Acquisition (SCADA) systems. Therefore, this study focuses on the cyber-attack vectors on SCADA systems to research the threats and risks targeting them. For this purpose, TCP/IP based protocols used in SCADA systems have been determined and analyzed at first. Then, the most common cyber-attacks are handled systematically considering hardware-side threats, software-side ones and the threats for communication infrastructures. Finally, some suggestions are given.
Network covert channels enable stealthy communications for malware and data exfiltration. For this reason, the development of effective countermeasures for covert channels is important for the protection of individuals and organizations. However, due to the number of available covert channel techniques, it can be considered impractical to develop countermeasures for all existing covert channels. In recent years, researchers started to develop countermeasures that (instead of only countering one particular hiding technique) can be applied to a whole family of similar hiding techniques. These families are referred to as hiding patterns. The main contribution of this paper is that we extend the idea of hiding patterns by introducing the concept of countermeasure variation. Countermeasure variation is the slight modification of a given countermeasure that was designed to detect covert channels of one specific hiding pattern so that the countermeasure can also detect covert channels that are representing other hiding patterns. We exemplify countermeasure variation using the compressibility score originally presented by Cabuk et al. The compressibility score is used to detect covert channels of the 'inter-packet times' pattern and we show that countermeasure variation allows the application of the compressibility score to detect covert channels of the 'size modulation' pattern, too.
The rapid evolution of the power grid into a smart one calls for innovative and compelling means to experiment with the upcoming expansions, and analyze their behavioral response under normal circumstances and when targeted by attacks. Such analysis is fundamental to setting up solid foundations for the smart grid. Smart grid Hardware-In-the-Loop (HIL) co-simulation environments serve as a key approach to answer questions on the systems components, functionality, security concerns along with analysis of the system outcome and expected behavior. In this paper, we introduce a HIL co-simulation framework capable of simulating the smart grid actions and responses to attacks targeting its power and communication components. Our testbed is equipped with a real-time power grid simulator, and an associated OpenStack-based communication network. Through the utilized communication network, we can emulate a multitude of attacks targeting the power system, and evaluating the grid response to those attacks. Moreover, we present different illustrative cyber attacks use cases, and analyze the smart grid behavior in the presence of those attacks.