Visible to the public Biblio

Found 293 results

Filters: Keyword is delays  [Clear All Filters]
2023-09-01
Torres-Figueroa, Luis, Hörmann, Markus, Wiese, Moritz, Mönich, Ullrich J., Boche, Holger, Holschke, Oliver, Geitz, Marc.  2022.  Implementation of Physical Layer Security into 5G NR Systems and E2E Latency Assessment. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4044—4050.
This paper assesses the impact on the performance that information-theoretic physical layer security (IT-PLS) introduces when integrated into a 5G New Radio (NR) system. For this, we implement a wiretap code for IT-PLS based on a modular coding scheme that uses a universal-hash function in its security layer. The main advantage of this approach lies in its flexible integration into the lower layers of the 5G NR protocol stack without affecting the communication's reliability. Specifically, we use IT-PLS to secure the transmission of downlink control information by integrating an extra pre-coding security layer as part of the physical downlink control channel (PDCCH) procedures, thus not requiring any change of the 3GPP 38 series standard. We conduct experiments using a real-time open-source 5G NR standalone implementation and use software-defined radios for over-the-air transmissions in a controlled laboratory environment. The overhead added by IT-PLS is determined in terms of the latency introduced into the system, which is measured at the physical layer for an end-to-end (E2E) connection between the gNB and the user equipment.
2023-07-31
Wang, Rui, Si, Liang, He, Bifeng.  2022.  Sliding-Window Forward Error Correction Based on Reference Order for Real-Time Video Streaming. IEEE Access. 10:34288—34295.
In real-time video streaming, data packets are transported over the network from a transmitter to a receiver. The quality of the received video fluctuates as the network conditions change, and it can degrade substantially when there is considerable packet loss. Forward error correction (FEC) techniques can be used to recover lost packets by incorporating redundant data. Conventional FEC schemes do not work well when scalable video coding (SVC) is adopted. In this paper, we propose a novel FEC scheme that overcomes the drawbacks of these schemes by considering the reference picture structure of SVC and weighting the reference pictures more when FEC redundancy is applied. The experimental results show that the proposed FEC scheme outperforms conventional FEC schemes.
2023-07-21
Telny, Andrey V., Monakhov, Mikhail Yu..  2022.  Possibility of the Intruder Type Determination in Systems of Physical Protection of Objects. 2022 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
This article proposes a method for determining the intruder type in the systems of physical protection of objects. An intruder trying to enter the territory, buildings or premises of the facility has to overcome typical engineering reinforcement elements of building structures. Elements of building structures are equipped with addressable alarm sensors. The intruder type is proposed to be determined according to its equipment by comparing the time of actually overcoming the building structure elements with the expert estimates. The time to overcome the elements of building structures is estimated by the time between successive responses of the security alarm address sensors. The intruder's awareness of the protection object is proposed to be assessed by tracking the route of its movement on the object using address sensors. Determining the intruder type according to the data of the security alarm systems can be used for the in-process tactics control of the security group actions.
2023-07-20
Khokhlov, Igor, Okutan, Ahmet, Bryla, Ryan, Simmons, Steven, Mirakhorli, Mehdi.  2022.  Automated Extraction of Software Names from Vulnerability Reports using LSTM and Expert System. 2022 IEEE 29th Annual Software Technology Conference (STC). :125—134.
Software vulnerabilities are closely monitored by the security community to timely address the security and privacy issues in software systems. Before a vulnerability is published by vulnerability management systems, it needs to be characterized to highlight its unique attributes, including affected software products and versions, to help security professionals prioritize their patches. Associating product names and versions with disclosed vulnerabilities may require a labor-intensive process that may delay their publication and fix, and thereby give attackers more time to exploit them. This work proposes a machine learning method to extract software product names and versions from unstructured CVE descriptions automatically. It uses Word2Vec and Char2Vec models to create context-aware features from CVE descriptions and uses these features to train a Named Entity Recognition (NER) model using bidirectional Long short-term memory (LSTM) networks. Based on the attributes of the product names and versions in previously published CVE descriptions, we created a set of Expert System (ES) rules to refine the predictions of the NER model and improve the performance of the developed method. Experiment results on real-life CVE examples indicate that using the trained NER model and the set of ES rules, software names and versions in unstructured CVE descriptions could be identified with F-Measure values above 0.95.
2023-07-19
Zuo, Langyi.  2022.  Comparison between the Traditional and Computerized Cognitive Training Programs in Treating Mild Cognitive Impairment. 2022 2nd International Conference on Electronic Information Engineering and Computer Technology (EIECT). :119—124.
MCI patients can be benefited from cognitive training programs to improve their cognitive capabilities or delay the decline of cognition. This paper evaluated three types of commonly seen categories of cognitive training programs (non-computerized / traditional cognitive training (TCT), computerized cognitive training (CCT), and virtual/augmented reality cognitive training (VR/AR CT)) based on six aspects: stimulation strength, user-friendliness, expandability, customizability/personalization, convenience, and motivation/atmosphere. In addition, recent applications of each type of CT were offered. Finally, a conclusion in which no single CT outperformed the others was derived, and the most applicable scenario of each type of CT was also provided.
2023-07-18
Langhammer, Martin, Gribok, Sergey, Pasca, Bogdan.  2022.  Low-Latency Modular Exponentiation for FPGAs. 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :1—9.
Modular exponentiation, especially for very large integers of hundreds or thousands of bits, is a commonly used function in popular cryptosystems such as RSA. The complexity of this algorithm is partly driven by the very large word sizes, which require many - often millions - of primitive operations in a CPU implementation, or a large amount of logic when accelerated by an ASIC. FPGAs, with their many embedded DSP resources have started to be used as well. In almost all cases, the calculations have required multiple - occasionally many - clock cycles to complete. Recently, blockchain algorithms have required very low-latency implementations of modular multiplications, motivating new implementations and approaches.In this paper we show nine different high performance modular exponentiation for 1024-bit operands, using a 1024-bit modular multiplication as it’s core. Rather than just showing a number of completed designs, our paper shows the evolution of architectures which lead to different resource mix options. This will allow the reader to apply the examples to different FPGA targets which may have differing ratios of logic, memory, and embedded DSP blocks. In one design, we show a 1024b modular multiplier requiring 83K ALMs and 2372 DSPs, with a delay of 21.21ns.
2023-07-11
Zhong, Fuli.  2022.  Resilient Control for Time-Delay Systems in Cyber-Physical Environment Using State Estimation and Switching Moving Defense. 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :204—212.
Cybersecurity for complex systems operating in cyber-physical environment is becoming more and more critical because of the increasing cyber threats and systems' vulnerabilities. Security by design is quite an important method to ensure the systems' normal operations and services supply. For the aim of coping with cyber-attack affections properly, this paper studies the resilient security control issue for time-varying delay systems in cyber-physical environment with state estimation and moving defense approach. Time-varying delay factor induced by communication and network transmission, or data acquisition and processing, or certain cyber-attacks, is considered. To settle the cyber-attacks from the perspective of system control, a dynamic system model considering attacks is presented, and the corresponding switched control model with time-varying delay against attacks is formulated. Then the state estimator for system states is designed to overcome the problem that certain states cannot be measured directly. Estimated states serve as the input of the resilient security controller. Sufficient conditions of the stability of the observer and control system are derived out with the Lyapunov stability analysis method jointly. A moving defense strategy based on anomaly detection and random switching is presented, in which an optimization problem for calculating the proper switching probability of each candidate actuator-controller pair is given. Simulation experimental results are shown to illustrate the effectiveness of the presented scheme.
2023-06-22
He, Yuxin, Zhuang, Yaqiang, Zhuang, Xuebin, Lin, Zijian.  2022.  A GNSS Spoofing Detection Method based on Sparse Decomposition Technique. 2022 IEEE International Conference on Unmanned Systems (ICUS). :537–542.
By broadcasting false Global Navigation Satellite System (GNSS) signals, spoofing attacks will induce false position and time fixes within the victim receiver. In this article, we propose a Sparse Decomposition (SD)-based spoofing detection algorithm in the acquisition process, which can be applied in a single-antenna receiver. In the first step, we map the Fast Fourier transform (FFT)-based acquisition result in a two-dimensional matrix, which is a distorted autocorrelation function when the receiver is under spoof attack. In the second step, the distorted function is decomposed into two main autocorrelation function components of different code phases. The corresponding elements of the result vector of the SD are the code-phase values of the spoofed and the authentic signals. Numerical simulation results show that the proposed method can not only outcome spoofing detection result, but provide reliable estimations of the code phase delay of the spoof attack.
ISSN: 2771-7372
2023-04-28
S, Arun, Prasad, Sanjana, Umamaheswari, G.  2022.  Clustering with Cross Layer Design against Spectrum Access Attack in Cognitive Radio Networks. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–4.
Cognitive Radio (CR) is an attractive solution in mobile communication for solving the spectrum scarcity problem. Moreover, security concerns are not yet fully satisfied. This article focuses on attacks such as the Primary user emulation attack (PUE) and the jammer attack. These attacks create anomalous spectrum access thereby disturbing the dynamic spectrum usage in the CR networks. A framework based on cross-layer has been designed effectively to determine these attacks in the CR networks. First, each secondary user will sense the spectrum in the physical layer and construct a feature space. Using the extracted features, the clusters are formed effectively for each user. In the network layer, multipath routing is employed to discover the routes for the secondary user. If the node in the path identifies any spectrum shortage, it will verify that location with the help of constructed cluster. If the node does not belong to any of the clusters, then it will be identified as the attacker node. Simulation results and security analysis are performed using the NS2 simulations, which show improvement in detection of the attacks, decrease in the detection delay, and less route dis-connectivity. The proposed cross-layer framework identifies the anomalous spectrum access attack effectively.
2023-04-27
Spliet, Roy, Mullins, Robert D..  2022.  Sim-D: A SIMD Accelerator for Hard Real-Time Systems. IEEE Transactions on Computers. 71:851–865.
Emerging safety-critical systems require high-performance data-parallel architectures and, problematically, ones that can guarantee tight and safe worst-case execution times. Given the complexity of existing architectures like GPUs, it is unlikely that sufficiently accurate models and algorithms for timing analysis will emerge in the foreseeable future. This motivates our work on Sim-D, a clean-slate approach to designing a real-time data-parallel architecture. Sim-D enforces a predictable execution model by isolating compute- and access resources in hardware. The DRAM controller uninterruptedly transfers tiles of data, requested by entire work-groups. This permits work-groups to be executed as a sequence of deterministic access- and compute phases, scheduling phases from up to two work-groups in parallel. Evaluation using a cycle-accurate timing model shows that Sim-D can achieve performance on par with an embedded-grade NVIDIA TK1 GPU under two conditions: applications refrain from using indirect DRAM transfers into large buffers, and Sim-D's scratchpads provide sufficient bandwidth. Sim-D's design facilitates derivation of safe WCET bounds that are tight within 12.7 percent on average, at an additional average performance penalty of \textbackslashsim∼9.2 percent caused by scheduling restrictions on phases.
Conference Name: IEEE Transactions on Computers
2023-04-14
Lai, Chengzhe, Wang, Yinzhen.  2022.  Achieving Efficient and Secure Query in Blockchain-based Traceability Systems. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1–5.
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
2023-03-31
Tarmissi, Khaled, Shalan, Atef, Al Shahrani, Abdullah, Alsulamy, Rayan, Alotaibi, Saud S., Al-Shareef, Sarah.  2022.  Mitigating Security Threats of Bitcoin Network by Reducing Message Broadcasts During Transaction Dissemination. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :772–777.
Propagation delay in blockchain networks is a major impairment of message transmission and validation in the bitcoin network. The transaction delay caused by message propagation across long network chains can cause significant threats to the bitcoin network integrity by allowing miners to find blocks during the message consensus process. Potential threats of slow transaction dissemination include double-spending, partitions, and eclipse attacks. In this paper, we propose a method for minimizing propagation delay by reducing non-compulsory message broadcasts during transaction dissemination in the underlying blockchain network. Our method will decrease the propagation delay in the bitcoin network and consequently mitigate the security threats based on message dissemination delay. Our results show improvement in the delay time with more effect on networks with a large number of nodes.
ISSN: 2472-7555
Gupta, Ashutosh, Agrawal, Anita.  2022.  Advanced Encryption Standard Algorithm with Optimal S-box and Automated Key Generation. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2112–2115.

Advanced Encryption Standard (AES) algorithm plays an important role in a data security application. In general S-box module in AES will give maximum confusion and diffusion measures during AES encryption and cause significant path delay overhead. In most cases, either L UTs or embedded memories are used for S- box computations which are vulnerable to attacks that pose a serious risk to real-world applications. In this paper, implementation of the composite field arithmetic-based Sub-bytes and inverse Sub-bytes operations in AES is done. The proposed work includes an efficient multiple round AES cryptosystem with higher-order transformation and composite field s-box formulation with some possible inner stage pipelining schemes which can be used for throughput rate enhancement along with path delay optimization. Finally, input biometric-driven key generation schemes are used for formulating the cipher key dynamically, which provides a higher degree of security for the computing devices.

2023-03-17
Alim, Mohammad Ehsanul, Maswood, Ali Iftekhar, Bin Alam, Md. Nazmus Sakib.  2022.  True-Time-Delay Line of Chipless RFID Tag for Security & IoT Sensing Applications. 2022 5th International Conference on Information and Communications Technology (ICOIACT). :1–6.
In this paper, a novel composite right/left-handed transmission line (CRLH TL) 3-unit cell is presented for finding excellent time-delay (TD) efficiency of Chipless RFID's True-Time-Delay Lines (TTDLs). RFID (Radio Frequency Identification) is a non-contact automatic identification technology that uses radio frequency (RF) signals to identify target items automatically and retrieve pertinent data without the need for human participation. However, as compared to barcodes, RFID tags are prohibitively expensive and complex to manufacture. Chipless RFID tags are RFID tags that do not contain silicon chips and are therefore less expensive and easier to manufacture. It combines radio broadcasting technology with radar technology. Radio broadcasting technology use radio waves to send and receive voice, pictures, numbers, and symbols, whereas radar technology employs the radio wave reflection theory. Chipless RFID lowers the cost of sensors such as gas, temperature, humidity, and pressure. In addition, Chipless RFID tags can be used as sensors which are also required for security purposes and future IoT applications.
ISSN: 2770-4661
Irtija, Nafis, Tsiropoulou, Eirini Eleni, Minwalla, Cyrus, Plusquellic, Jim.  2022.  True Random Number Generation with the Shift-register Reconvergent-Fanout (SiRF) PUF. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :101–104.
True Random Number Generator (TRNG) is an important hardware security primitive for system security. TRNGs are capable of providing random bits for initialization vectors in encryption engines, for padding and nonces in authentication protocols and for seeds to pseudo random number generators (PRNG). A TRNG needs to meet the same statistical quality standards as a physical unclonable function (PUF) with regard to randomness and uniqueness, and therefore one can envision a unified architecture for both functions. In this paper, we investigate a FPGA implementation of a TRNG using the Shift-register Reconvergent-Fanout (SiRF) PUF. The SiRF PUF measures path delays as a source of entropy within a engineered logic gate netlist. The delays are measured at high precision using a time-to-digital converter, and then processed into a random bitstring using a series of linear-time mathematical operations. The SiRF PUF algorithm that is used for key generation is reused for the TRNG, with simplifications that improve the bit generation rate of the algorithm. This enables the TRNG to leverage both fixed PUF-based entropy and random noise sources, and makes the TRNG resilient to temperature-voltage attacks. TRNG bitstrings generated from a programmable logic implementation of the SiRF PUF-TRNG on a set of FPGAs are evaluated using statistical testing tools.
2023-02-17
Mohan, K Venkata Murali, Kodati, Sarangam, Krishna, V..  2022.  Securing SDN Enabled IoT Scenario Infrastructure of Fog Networks From Attacks. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1239–1243.
Nowadays, lives are very much easier with the help of IoT. Due to lack of protection and a greater number of connections, the management of IoT becomes more difficult To manage the network flow, a Software Defined Networking (SDN) has been introduced. The SDN has a great capability in automatic and dynamic distribution. For harmful attacks on the controller a centralized SDN architecture unlocks the scope. Therefore, to reduce these attacks in real-time, a securing SDN enabled IoT scenario infrastructure of Fog networks is preferred. The virtual switches have network enforcement authorized decisions and these are executed through the SDN network. Apart from this, SDN switches are generally powerful machines and simultaneously these are used as fog nodes. Therefore, SDN looks like a good selection for Fog networks of IoT. Moreover, dynamically distributing the necessary crypto keys are allowed by the centralized and software channel protection management solution, in order to establish the Datagram Transport Layer Security (DTIS) tunnels between the IoT devices, when demanded by the cyber security framework. Through the extensive deployment of this combination, the usage of CPU is observed to be 30% between devices and the latencies are in milliseconds range, and thus it presents the system feasibility with less delay. Therefore, by comparing with the traditional SDN, it is observed that the energy consumption is reduced by more than 90%.
Jo, Hyeonjun, Kim, Kyungbaek.  2022.  Security Service-aware Reinforcement Learning for Efficient Network Service Provisioning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In case of deploying additional network security equipment in a new location, network service providers face difficulties such as precise management of large number of network security equipment and expensive network operation costs. Accordingly, there is a need for a method for security-aware network service provisioning using the existing network security equipment. In order to solve this problem, there is an existing reinforcement learning-based routing decision method fixed for each node. This method performs repeatedly until a routing decision satisfying end-to-end security constraints is achieved. This generates a disadvantage of longer network service provisioning time. In this paper, we propose security constraints reinforcement learning based routing (SCRR) algorithm that generates routing decisions, which satisfies end-to-end security constraints by giving conditional reward values according to the agent state-action pairs when performing reinforcement learning.
ISSN: 2576-8565
Syambas, Nana Rachmana, Juhana, Tutun, Hendrawan, Mulyana, Eueung, Edward, Ian Joseph Matheus, Situmorang, Hamonangan, Mayasari, Ratna, Negara, Ridha Muldina, Yovita, Leanna Vidya, Wibowo, Tody Ariefianto et al..  2022.  Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
2023-02-03
Chen, Songlin, Wang, Sijing, Xu, Xingchen, Jiao, Long, Wen, Hong.  2022.  Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
2023-01-13
Liu, Xingye, Ampadu, Paul.  2022.  A Scalable Single-Input-Multiple-Output DC/DC Converter with Enhanced Load Transient Response and Security for Low-Power SoCs. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :1497–1501.
This paper presents a scalable single-input-multiple-output DC/DC converter targeting load transient response and security improvement for low-power System-on-Chips (SoCs). A two-stage modular architecture is introduced to enable scalability. The shared switched-capacitor pre-charging circuits are implemented to improve load transient response and decouple correlations between inputs and outputs. The demo version of the converter has three identical outputs, each supporting 0.3V to 0.9V with a maximum load current of 150mA. Based on post-layout simulation results in 32nm CMOS process, the converter output provides 19.3V/μs reference tracking speed and 27mA/ns workload transitions with negligible voltage droops or spikes. No cross regulation is observed at any outputs with a worst-case voltage ripple of 68mV. Peak efficiency reaches 85.5% for each output. With variable delays added externally, the input-output correlations can change 10 times and for steady-state operation, such correlation factors are always kept below 0.05. The converter is also scaled to support 6 outputs with only 0.56mm2 more area and maintains same load transient response performance.
Ahmad, Adil, Lee, Sangho, Peinado, Marcus.  2022.  HARDLOG: Practical Tamper-Proof System Auditing Using a Novel Audit Device. 2022 IEEE Symposium on Security and Privacy (SP). :1791—1807.
Audit systems maintain detailed logs of security-related events on enterprise machines to forensically analyze potential incidents. In principle, these logs should be safely stored in a secure location (e.g., network storage) as soon as they are produced, but this incurs prohibitive slowdown to a monitored machine. Hence, existing audit systems protect batched logs asynchronously (e.g., after tens of seconds), but this allows attackers to tamper with unprotected logs.This paper presents HARDLOG, a practical and effective system that employs a novel audit device to provide fine-grained log protection with minimal performance slowdown. HARDLOG implements criticality-aware log protection: it ensures that logs are synchronously protected in the audit device before an infrequent security-critical event is allowed to execute, but logs are asynchronously protected on frequent non-critical events to minimize performance overhead. Importantly, even on non-critical events, HARDLOG ensures bounded-asynchronous protection: it sends log entries to the audit device within a tiny, bounded delay from their creation using well-known real-time techniques. To demonstrate HARDLOG’S effectiveness, we prototyped an audit device using commodity components and implemented a reference audit system for Linux. Our prototype achieves a bounded protection delay of 15 milliseconds at non-critical events alongside undelayed protection at critical events. We also show that, for diverse real-world programs, HARDLOG incurs a geometric mean performance slowdown of only 6.3%, hence it is suitable for many real-world deployment scenarios.
2022-12-06
Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

Aneja, Sakshi, Mittal, Sumit, Sharma, Dhirendra.  2022.  An Optimized Mobility Management Framework for Routing Protocol Lossy Networks using Optimization Algorithm. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-8.

As a large number of sensor nodes as well as limited resources such as energy, memory, computing power, as well as bandwidth. Lossy linkages connect these nodes together. In early 2008,IETF working group looked into using current routing protocols for LLNs. Routing Over minimum power and Lossy networksROLL standardizes an IPv6 routing solution for LLNs because of the importance of LLNs in IoT.IPv6 Routing Protocol is based on the 6LoWPAN standard. RPL has matured significantly. The research community is becoming increasingly interested in it. The topology of RPL can be built in a variety of ways. It creates a topology in advance. Due to the lack of a complete review of RPL, in this paper a mobility management framework has been proposed along with experimental evaluation by applying parameters likePacket Delivery Ratio, throughput, end to end delay, consumed energy on the basis of the various parameters and its analysis done accurately. Finally, this paper can help academics better understand the RPL and engage in future research projects to improve it.

2022-11-18
Li, Pengzhen, Koyuncu, Erdem, Seferoglu, Hulya.  2021.  Respipe: Resilient Model-Distributed DNN Training at Edge Networks. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3660–3664.
The traditional approach to distributed deep neural network (DNN) training is data-distributed learning, which partitions and distributes data to workers. This approach, although has good convergence properties, has high communication cost, which puts a strain especially on edge systems and increases delay. An emerging approach is model-distributed learning, where a training model is distributed across workers. Model-distributed learning is a promising approach to reduce communication and storage costs, which is crucial for edge systems. In this paper, we design ResPipe, a novel resilient model-distributed DNN training mechanism against delayed/failed workers. We analyze the communication cost of ResPipe and demonstrate the trade-off between resiliency and communication cost. We implement ResPipe in a real testbed consisting of Android-based smartphones, and show that it improves the convergence rate and accuracy of training for convolutional neural networks (CNNs).
Tanimoto, Shigeaki, Matsumoto, Mari, Endo, Teruo, Sato, Hiroyuki, Kanai, Atsushi.  2021.  Risk Management of Fog Computing for Improving IoT Security. 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). :703—709.
With the spread of the Internet, various devices are now connected to it and the number of IoT devices is increasing. Data generated by IoT devices has traditionally been aggregated in the cloud and processed over time. However, there are two issues with using the cloud. The first is the response delay caused by the long distance between the IoT device and the cloud, and the second is the difficulty of implementing sufficient security measures on the IoT device side due to the limited resources of the IoT device at the end. To address these issues, fog computing, which is located in the middle between IoT devices and the cloud, has been attracting attention as a new network component. However, the risks associated with the introduction of fog computing have not yet been fully investigated. In this study, we conducted a risk assessment of fog computing, which is newly established to promote the use of IoT devices, and identified 24 risk factors. The main countermeasures include the gradual introduction of connected IoT connection protocols and security policy matching. We also demonstrated the effectiveness of the proposed risk measures by evaluating the risk values. The proposed risk countermeasures for fog computing should help us to utilize IoT devices in a safe and secure manner.