Mohan, K Venkata Murali, Kodati, Sarangam, Krishna, V..
2022.
Securing SDN Enabled IoT Scenario Infrastructure of Fog Networks From Attacks. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1239–1243.
Nowadays, lives are very much easier with the help of IoT. Due to lack of protection and a greater number of connections, the management of IoT becomes more difficult To manage the network flow, a Software Defined Networking (SDN) has been introduced. The SDN has a great capability in automatic and dynamic distribution. For harmful attacks on the controller a centralized SDN architecture unlocks the scope. Therefore, to reduce these attacks in real-time, a securing SDN enabled IoT scenario infrastructure of Fog networks is preferred. The virtual switches have network enforcement authorized decisions and these are executed through the SDN network. Apart from this, SDN switches are generally powerful machines and simultaneously these are used as fog nodes. Therefore, SDN looks like a good selection for Fog networks of IoT. Moreover, dynamically distributing the necessary crypto keys are allowed by the centralized and software channel protection management solution, in order to establish the Datagram Transport Layer Security (DTIS) tunnels between the IoT devices, when demanded by the cyber security framework. Through the extensive deployment of this combination, the usage of CPU is observed to be 30% between devices and the latencies are in milliseconds range, and thus it presents the system feasibility with less delay. Therefore, by comparing with the traditional SDN, it is observed that the energy consumption is reduced by more than 90%.
Jo, Hyeonjun, Kim, Kyungbaek.
2022.
Security Service-aware Reinforcement Learning for Efficient Network Service Provisioning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In case of deploying additional network security equipment in a new location, network service providers face difficulties such as precise management of large number of network security equipment and expensive network operation costs. Accordingly, there is a need for a method for security-aware network service provisioning using the existing network security equipment. In order to solve this problem, there is an existing reinforcement learning-based routing decision method fixed for each node. This method performs repeatedly until a routing decision satisfying end-to-end security constraints is achieved. This generates a disadvantage of longer network service provisioning time. In this paper, we propose security constraints reinforcement learning based routing (SCRR) algorithm that generates routing decisions, which satisfies end-to-end security constraints by giving conditional reward values according to the agent state-action pairs when performing reinforcement learning.
ISSN: 2576-8565
Syambas, Nana Rachmana, Juhana, Tutun, Hendrawan, Mulyana, Eueung, Edward, Ian Joseph Matheus, Situmorang, Hamonangan, Mayasari, Ratna, Negara, Ridha Muldina, Yovita, Leanna Vidya, Wibowo, Tody Ariefianto et al..
2022.
Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.