Biblio
Towards Designing Conversational Agents for Pair Programming: Accounting for Creativity Strategies and Conversational Styles. 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). :1–11.
.
2020. Established research on pair programming reveals benefits, including increasing communication, creativity, self-efficacy, and promoting gender inclusivity. However, research has reported limitations such as finding a compatible partner, scheduling sessions between partners, and resistance to pairing. Further, pairings can be affected by predispositions to negative stereotypes. These problems can be addressed by replacing one human member of the pair with a conversational agent. To investigate the design space of such a conversational agent, we conducted a controlled remote pair programming study. Our analysis found various creative problem-solving strategies and differences in conversational styles. We further analyzed the transferable strategies from human-human collaboration to human-agent collaboration by conducting a Wizard of Oz study. The findings from the two studies helped us gain insights regarding design of a programmer conversational agent. We make recommendations for researchers and practitioners for designing pair programming conversational agent tools.
Towards Enabling Deletion in Append-Only Blockchains to Support Data Growth Management and GDPR Compliance. 2020 IEEE International Conference on Blockchain (Blockchain). :393–400.
.
2020. Conventional blockchain implementations with append-only semantics do not support deleting or overwriting data in confirmed blocks. However, many industry-relevant use cases require the ability to delete data, especially when personally identifiable information is stored or when data growth has to be constrained. Existing attempts to reconcile these contradictions compromise on core qualities of the blockchain paradigm, as they include backdoor-like approaches such as central authorities with elevated rights or usage of specialized chameleon hash algorithms in chaining of the blocks. The contribution of this paper is a novel architecture for the blockchain ledger and consensus, which uses a tree of context chains with simultaneous validity. A context chain captures the transactions of a closed group of entities and persons, thus structuring blocks in a precisely defined way. The resulting context isolation enables consensus-steered deletion of an entire context without side effects to other contexts. We show how this architecture supports truncation, data rollover and separation of concerns, how the GDPR regulations can be fulfilled by this architecture and how it differs from sidechains and state channels.
Towards the Construction of Global IPv6 Hitlist and Efficient Probing of IPv6 Address Space. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
.
2020. Fast IPv4 scanning has made sufficient progress in network measurement and security research. However, it is infeasible to perform brute-force scanning of the IPv6 address space. We can find active IPv6 addresses through scanning candidate addresses generated by the state-of-the-art algorithms, whose probing efficiency of active IPv6 addresses, however, is still very low. In this paper, we aim to improve the probing efficiency of IPv6 addresses in two ways. Firstly, we perform a longitudinal active measurement study over four months, building a high-quality dataset called hitlist with more than 1.3 billion IPv6 addresses distributed in 45.2k BGP prefixes. Different from previous work, we probe the announced BGP prefixes using a pattern-based algorithm, which makes our dataset overcome the problems of uneven address distribution and low active rate. Secondly, we propose an efficient address generation algorithm DET, which builds a density space tree to learn high-density address regions of the seed addresses in linear time and improves the probing efficiency of active addresses. On the public hitlist and our hitlist, we compare our algorithm DET against state-of-the-art algorithms and find that DET increases the de-aliased active address ratio by 10%, and active address (including aliased addresses) ratio by 14%, by scanning 50 million addresses.
Towards the Detection of Phishing Attacks. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :337—343.
.
2020. Phishing is an act of creating a website similar to a legitimate website with a motive of stealing user's confidential information. Phishing fraud might be the most popular cybercrime. Phishing is one of the risks that originated a couple of years back but still prevailing. This paper discusses various phishing attacks, some of the latest phishing evasion techniques used by attackers and anti-phishing approaches. This review raises awareness of those phishing strategies and helps the user to practice phishing prevention. Here, a hybrid approach of phishing detection also described having fast response time and high accuracy.
Transparent IDS Offloading for Split-Memory Virtual Machines. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :833—838.
.
2020. To enable virtual machines (VMs) with a large amount of memory to be flexibly migrated, split migration has been proposed. It divides a large-memory VM into small pieces and transfers them to multiple hosts. After the migration, the VM runs across those hosts and exchanges memory data between hosts using remote paging. For such a split-memory VM, however, it becomes difficult to securely run intrusion detection systems (IDS) outside the VM using a technique called IDS offloading. This paper proposes VMemTrans to support transparent IDS offloading for split-memory VMs. In VMemTrans, offloaded IDS can monitor a split-memory VM as if that memory were not distributed. To achieve this, VMemTrans enables IDS running in one host to transparently access VM's remote memory. To consider a trade-off, it provides two methods for obtaining memory data from remote hosts: self paging and proxy paging. We have implemented VMemTrans in KVM and compared the execution performance between the two methods.
Transport Network Slices with Security Service Level Agreements. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1–4.
.
2020. This paper presents an initial architecture to manage End-to-End Network Slices which, once deployed, are associated with Security Service Level Agreement(s) to increase the security on the virtual deployed resources and create End-to-End Secure Network Slices. Moreover, the workflows regarding the Network Slicing provisioning and the whole SSLA Lifecycle management is detailed.
Triggering and Auditing the Event During Intrusion Detections in WSN’s Defence Application. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1328–1332.
.
2020. WSNs are extensively used in defence application for monitoring militant activities in various ways in large unknown territories. Here WSNs has to have large set of distributed systems in the form as sensors nodes. Along with security concerns, False Alarming is also a factor which may interrupt the service and downgrade the application further. Thus in our work we have made sure that when a trigger is raised to an event, images can be captured from the connected cameras so that it will be helpful for both auditing the event as well as capturing the scene which led to the triggering of the event.
Trojan Traffic Detection Based on Machine Learning. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :157–160.
.
2020. At present, most Trojan detection methods are based on the features of host and code. Such methods have certain limitations and lag. This paper analyzes the network behavior features and network traffic of several typical Trojans such as Zeus and Weasel, and proposes a Trojan traffic detection algorithm based on machine learning. First, model different machine learning algorithms and use Random Forest algorithm to extract features for Trojan behavior and communication features. Then identify and detect Trojans' traffic. The accuracy is as high as 95.1%. Comparing the detection of different machine learning algorithms, experiments show that our algorithm has higher accuracy, which is helpful and useful for identifying Trojan.
Trust based secure routing mechanisms for wireless sensor networks: A survey. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1003—1009.
.
2020. Wireless Sensor Network (WSN)is a predominant technology that is widely used in many applications such as industrial sectors, defense, environment, habitat monitoring, medical fields etc., These applications are habitually delegated for observing sensitive and confidential raw data such as adversary position, movement in the battle field, location of personnel in a building, changes in environmental condition, regular medical updates from patient side to doctors or hospital control rooms etc., Security becomes inevitable in WSN and providing security is being truly intricate because of in-built nature of WSN which is assailable to attacks easily. Node involved in WSN need to route the data to the neighboring nodes wherein any attack in the node could lead to fiasco. Of late trust mechanisms have been considered to be an ideal solution that can mitigate security problems in WSN. This paper aims to investigate various existing trust-based Secure Routing (SR) protocols and mechanisms available for the wireless sensing connection. The concept of the present trust mechanism is also analyzed with respect to methodology, trust metric, pros, cons, and complexity involved. Finally, the security resiliency of various trust models against the attacks is also analyzed.
Trust based Security framework for IoT data. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
.
2020. With an incredible growth in MEMS and Internet, IoT has developed to an inevitable invention and resource for human needs. IoT reframes the communication and created a new way of machine to machine communication. IoT utilizes smart sensor to monitor and track environmental changes in any area of interest. The high volume of sensed information is processed, formulated and presented to the user for decision making. In this paper a model is designed to perform trust evaluation and data aggregation with confidential transmission of secured information in to the network and enables higher secure and reliable data transmission for effective analysis and decision making. The Sensors in IoT devices, senses the same information and forwards redundant data in to the network. This results in higher network congestion and causes transmission overhead. This could be control by introducing data aggregation. A gateway sensor node can act as aggregator and a forward unique information to the base station. However, when the network is adulterated with malicious node, these malicious nodes tend to injects false data in to the network. In this paper, a trust based malicious node detection technique has been introduced to isolate the malicious node from forwarding false information into the network. Simulation results proves the proposed protocol can be used to reduce malicious attack with increased throughput and performance.
Trust Evaluation for Securing Compromised data Aggregation against the Collusion Attack in WSN. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1–5.
.
2020. With a storage space limit on the sensors, WSN has some drawbacks related to bandwidth and computational skills. This limited resources would reduce the amount of data transmitted across the network. For this reason, data aggregation is considered as a new process. Iterative filtration (IF) algorithms, which provide trust assessment to the various sources from which the data aggregation has been performed, are efficient in the present data aggregation algorithms. Trust assessment is done with weights from the simple average method to aggregation, which treats attack susceptibility. Iteration filter algorithms are stronger than the ordinary average, but they do not handle the current advanced attack that takes advantage of false information with many compromise nodes. Iterative filters are strengthened by an initial confidence estimate to track new and complex attacks, improving the solidity and accuracy of the IF algorithm. The new method is mainly concerned with attacks against the clusters and not against the aggregator. In this process, if an aggregator is attacked, the current system fails, and the information is eventually transmitted to the aggregator by the cluster members. This problem can be detected when both cluster members and aggregators are being targeted. It is proposed to choose an aggregator which chooses a new aggregator according to the remaining maximum energy and distance to the base station when an aggregator attack is detected. It also save time and energy compared to the current program against the corrupted aggregator node.
Trust Management in Smart Grid: A Markov Trust Model. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
.
2020. By leveraging the advancements in Information and Communication Technologies (ICT), Smart Grid (SG) aims to modernize the traditional electric power grid towards efficient distribution and reliable management of energy in the electrical domain. The SG Advanced Metering Infrastructure (AMI) contains numerous smart meters, which are deployed throughout the distribution grid. However, these smart meters are susceptible to cyberthreats that aim to disrupt the normal operation of the SG. Cyberattacks can have various consequences in the smart grid, such as incorrect customer billing or equipment destruction. Therefore, these devices should operate on a trusted basis in order to ensure the availability, confidentiality, and integrity of the metering data. In this paper, we propose a Markov chain trust model that determines the Trust Value (TV) for each AMI device based on its behavior. Finally, numerical computations were carried out in order to investigate the reaction of the proposed model to the behavior changes of a device.
Trust or Not?: A Computational Robot-Trusting-Human Model for Human-Robot Collaborative Tasks 2020 IEEE International Conference on Big Data (Big Data). :5689–5691.
.
2020. The trust of a robot in its human partner is a significant issue in human-robot interaction, which is seldom explored in the field of robotics. This study addresses a critical issue of robots' trust in humans during the human-robot collaboration process based on the data of human motions, past interactions of the human-robot pair, and the human's current performance in the co-carry task. The trust level is evaluated dynamically throughout the collaborative task that allows the trust level to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Experimental results showed that the robot effectively assisted the human in collaborative tasks through the proposed computational trust model.
A Trust-based Message Passing Algorithm against Persistent SSDF. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1112–1115.
.
2020. As a key technology in cognitive radio, cooperative spectrum sensing has been paid more and more attention. In cooperative spectrum sensing, multi-user cooperative spectrum sensing can effectively alleviate the performance degradation caused by multipath effect and shadow fading, and improve the spectrum utilization. However, as there may be malicious users in the cooperative sensing users, sending forged false messages to the fusion center or neighbor nodes to mislead them to make wrong judgments, which will greatly reduce the spectrum utilization. To solve this problem, this paper proposes an intelligent anti spectrum sensing data falsification (SSDF) attack algorithm using trust-based non consensus message passing algorithm. In this scheme, only one perception is needed, and the historical propagation path of each message is taken as the basis to calculate the reputation of each cognitive user. Every time a node receives different messages from the same cognitive user, there must be malicious users in its propagation path. We reward the nodes that appear more times in different paths with reputation value, and punish the nodes that appear less. Finally, the real value of the tampered message is restored according to the calculated reputation value. The MATLAB results show that the proposed scheme has a high recovery rate for messages and can identify malicious users in the network at the same time.
A Trust-based Recommender System by Integration of Graph Clustering and Ant Colony Optimization. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :598–604.
.
2020. Recommender systems (RSs) are intelligent systems to help e-commerce users to find their preferred items among millions of available items by considering the profiles of both users and items. These systems need to predict the unknown ratings and then recommend a set of high rated items. Among the others, Collaborative Filtering (CF) is a successful recommendation approach and has been utilized in many real-world systems. CF methods seek to predict missing ratings by considering the preferences of those users who are similar to the target user. A major task in Collaborative Filtering is to identify an accurate set of users and employing them in the rating prediction process. Most of the CF-based methods suffer from the cold-start issue which arising from an insufficient number of ratings in the prediction process. This is due to the fact that users only comment on a few items and thus CF methods faced with a sparse user-item matrix. To tackle this issue, a new collaborative filtering method is proposed that has a trust-aware strategy. The proposed method employs the trust relationships of users as additional information to help the CF tackle the cold-start issue. To this end, the proposed integrated trust relationships in the prediction process by using the Ant Colony Optimization (ACO). The proposed method has four main steps. The aim of the first step is ranking users based on their similarities to the target user. This step uses trust relationships and the available rating values in its process. Then in the second step, graph clustering methods are used to cluster the trust graph to group similar users. In the third step, the users are weighted based on their similarities to the target users. To this end, an ACO process is employed on the users' graph. Finally, those of top users with high similarity to the target user are used in the rating prediction process. The superiority of our method has been shown in the experimental results in comparison with well-known and state-of-the-art methods.
Trusted Anonymous Authentication For Vehicular Cyber-Physical Systems. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :37—44.
.
2020. In vehicular cyber-physical systems, the mounted cameras on the vehicles, together with the fixed roadside cameras, can produce pictorial data for multiple purposes. In this process, ensuring the security and privacy of vehicles while guaranteeing efficient data transmission among vehicles is critical. This motivates us to propose a trusted anonymous authentication scheme for vehicular cyber-physical systems and Internet-of-Things. Our scheme is designed based on a three-tier architecture which contains cloud layer, fog layer, and user layer. It utilizes bilinear-free certificateless signcryption to realize a secure and trusted anonymous authentication efficiently. We verify its effectiveness through theoretical analyses in terms of correctness, security, and efficiency. Furthermore, our simulation results demonstrate that the communication overhead, the computation overhead, and the packet loss rate of the proposed scheme are significantly better than those of the state-of-the-art techniques. Particularly, the proposed scheme can speed up the computation process at least 10× compared to all the state-of-the-art approaches.
Trustworthiness in Sensor Networks A Reputation-Based Method for Weather Stations. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–6.
.
2020. Trustworthiness is a soft-security feature that evaluates the correct behavior of nodes in a network. More specifically, this feature tries to answer the following question: how much should we trust in a certain node? To determine the trustworthiness of a node, our approach focuses on two reputation indicators: the self-data trust, which evaluates the data generated by the node itself taking into account its historical data; and the peer-data trust, which utilizes the nearest nodes' data. In this paper, we show how these two indicators can be calculated using the Gaussian Overlap and Pearson correlation. This paper includes a validation of our trustworthiness approach using real data from unofficial and official weather stations in Portugal. This is a representative scenario of the current situation in many other areas, with different entities providing different kinds of data using autonomous sensors in a continuous way over the networks.
Trustworthy AI Development Guidelines for Human System Interaction. 2020 13th International Conference on Human System Interaction (HSI). :130–136.
.
2020. Artificial Intelligence (AI) is influencing almost all areas of human life. Even though these AI-based systems frequently provide state-of-the-art performance, humans still hesitate to develop, deploy, and use AI systems. The main reason for this is the lack of trust in AI systems caused by the deficiency of transparency of existing AI systems. As a solution, “Trustworthy AI” research area merged with the goal of defining guidelines and frameworks for improving user trust in AI systems, allowing humans to use them without fear. While trust in AI is an active area of research, very little work exists where the focus is to build human trust to improve the interactions between human and AI systems. In this paper, we provide a concise survey on concepts of trustworthy AI. Further, we present trustworthy AI development guidelines for improving the user trust to enhance the interactions between AI systems and humans, that happen during the AI system life cycle.
A Truth-Inducing Sybil Resistant Decentralized Blockchain Oracle. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :128–135.
.
2020. Many blockchain applications use decentralized oracles to trustlessly retrieve external information as those platforms are agnostic to real-world information. Some existing decentralized oracle protocols make use of majority-voting schemes to determine the outcomes and/or rewards to participants. In these cases, the awards (or penalties) grow linearly to the participant stakes, therefore voters are indifferent between voting through a single or multiple identities. Furthermore, the voters receive a reward only when they agree with the majority outcome, a tactic that may lead to herd behavior. This paper proposes an oracle protocol based on peer prediction mechanisms with non-linear staking rules. In the proposed approach, instead of being rewarded when agreeing with a majority outcome, a voter receives awards when their report achieves a relatively high score based on a peer prediction scoring scheme. The scoring scheme is designed to be incentive compatible so that the maximized expected score is achieved only with honest reporting. A non-linear stake scaling rule is proposed to discourage Sybil attacks. This paper also provides a theoretical analysis and guidelines for implementation as reference.
Ultimate Secrecy in Cooperative and Multi-hop Wireless Communications. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. :1–4.
.
2020. In this work, communication secrecy in cooperative and multi-hop wireless communications for various radio frequencies are examined. Attenuation lines and ranges of both detection and ultimate secrecy regions were calculated for cooperative communication channel and multi-hop channel with various number of hops. From results, frequency ranges with the highest potential to apply bandwidth saving method known as frequency reuse were determined and compared to point-to-point channel. Frequencies with the highest attenuation were derived and their ranges of both detection and ultimate secrecy are calculated. Point-to-point, cooperative and multi-hop channels were compared in terms of ultimate secrecy ranges. Multi-hop channel measurements were made with different number of hops and the relation between the number of hops and communication security is examined. Ultimate secrecy ranges were calculated up to 1 Terahertz and found to be less than 13 meters between 550-565 GHz frequency range. Therefore, for short-range wireless communication systems such as indoor and in-device communication systems (board-to-board or chip-to-chip communications), it is shown that various bands in the Terahertz band can be used to reuse the same frequency in different locations to obtain high security and high bandwidth.
A Unique Approach towards Image Publication and Provenance using Blockchain. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :311–314.
.
2020. The recent spurt of incidents related to copyrights and security breaches has led to the monetary loss of several digital content creators and publishers. These incidents conclude that the existing system lacks the ability to uphold the integrity of their published content. Moreover, some of the digital content owners rely on third parties, results in lack of ability to provide provenance of digital media. The question that needs to be addressed today is whether modern technologies can be leveraged to suppress such incidents and regain the confidence of creators and the audience. Fortunately, this paper presents a unique framework that empowers digital content creators to have complete control over the place of its origin, accessibility and impose restrictions on unauthorized alteration of their content. This framework harnesses the power of the Ethereum platform, a part of Blockchain technology, and uses S mart Contracts as a key component empowering the creators with enhanced control of their content and the corresponding audience.
UniRoam: An Anonymous and Accountable Authentication Scheme for Cross-Domain Access. 2020 International Conference on Networking and Network Applications (NaNA). :198—205.
.
2020. In recent years, cross-domain roaming through Wi-Fi is ubiquitous, and the number of roaming users has increased dramatically. It is essential to authenticate users belonging to different institutes to ensure network privacy and security. Existing systems, such as eduroam, have centralized and hierarchical structure on indorse accounts that create privacy and security issues. We have proposed UniRoam, a blockchain-based cross-domain authentication scheme that provides accountability and anonymity without any trusted authority. Unlike traditional centralized approaches, UniRoam provides access authentication for its servers and users to provide anonymity and accountability without any privacy leakage issues efficiently. By using the sovrin identifier as an anonymous identity, we integrate our system with Hyperledger and Intel SGX to authenticate users that preserves both anonymity and trust when the user connects to the network. Therefore, UniRoam is highly “faulted-tolerant” to deal with different attacks and provides an effective solution that can be deployed easily in different environments.
Use Cases of Authentication Protocols in the Context of Digital Payment System. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
.
2020. In the digital payment system, the transactions and their data about clients are very sensitive, so the security and privacy of personal information of the client is a big concern. The confirmation towards security necessities prevents the data from a stolen and unauthorized person over the digital transactions, So the stronger authentication methods required, which must be based on cryptography. Initially, in the payment ecosystem, they were using the Kerberos protocol, but now different approaches such as Challenge-Handshake Authentication Protocol (CHAP), Tokenization, Two-Factor Authentication(PIN, MPIN, OTP), etc. such protocols are being used in the payment system. This paper presents the use cases of different authentication protocols. Further, the use of these protocols in online payment systems to verify each individual are explained.
User Privacy Protection Technology of Tennis Match Live Broadcast from Media Cloud Platform Based on AES Encryption Algorithm. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :267—269.
.
2020. With the improvement of the current Internet software and hardware performance, cloud storage has become one of the most widely used applications. This paper proposes a user privacy protection algorithm suitable for tennis match live broadcast from media cloud platform. Through theoretical and experimental verification, this algorithm can better protect the privacy of users in the live cloud platform. This algorithm is a ciphertext calculation algorithm based on data blocking. Firstly, plaintext data are grouped, then AES ciphertext calculation is performed on each group of plaintext data simultaneously and respectively, and finally ciphertext data after grouping encryption is spliced to obtain final ciphertext data. Experimental results show that the algorithm has the characteristics of large key space, high execution efficiency, ciphertext statistics and good key sensitivity.
Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :171—176.
.
2020. In recent years, there has been a significant increase in network intrusion attacks which raises a great concern from the privacy and security aspects. Due to the advancement of the technology, cyber-security attacks are becoming very complex such that the current detection systems are not sufficient enough to address this issue. Therefore, an implementation of an intelligent and effective network intrusion detection system would be crucial to solve this problem. In this paper, we use deep learning techniques, namely, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to design an intelligent detection system which is able to detect different network intrusions. Additionally, we evaluate the performance of the proposed solution using different evaluation matrices and we present a comparison between the results of our proposed solution to find the best model for the network intrusion detection system.