Biblio

Found 19604 results

2020-01-28
Handa, Jigyasa, Singh, Saurabh, Saraswat, Shipra.  2019.  A Comparative Study of Mouse and Keystroke Based Authentication. 2019 9th International Conference on Cloud Computing, Data Science Engineering (Confluence). :670–674.

One of the basic behavioural biometric methods is keystroke element. Being less expensive and not requiring any extra bit of equipment is the main advantage of keystroke element. The primary concentration of this paper is to give an inevitable review of behavioural biometrics strategies, measurements and different methodologies and difficulties and future bearings specially of keystroke analysis and mouse dynamics. Keystrokes elements frameworks utilize insights, e.g. time between keystrokes, word decisions, word mixes, general speed of writing and so on. Mouse Dynamics is termed as the course of actions captured from the moving mouse by an individual when interacting with a GUI. These are representative factors which may be called mouse dynamics signature of an individual, and may be used for verification of identity of an individual. In this paper, we compare the authentication system based on keystroke dynamics and mouse dynamics.

2020-08-10
Rodinko, Mariia, Oliynykov, Roman.  2019.  Comparing Performances of Cypress Block Cipher and Modern Lighweight Block Ciphers on Different Platforms. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :113–116.

The paper is devoted to the comparison of performance of prospective lightweight block cipher Cypress with performances of the known modern lightweight block ciphers such as AES, SPECK, SPARX etc. The measurement was done on different platforms: Windows, Linux and Android. On all platforms selected, the block cipher Cypress showed the best results. The block cipher Cypress-256 showed the highest performance on Windows x32 (almost 3.5 Gbps), 64-bit Linux (over 8 Gbps) and Android (1.3 Gbps). On Windows x64 the best result was obtained by Cypress- 512 (almost 5 Gbps).

2020-01-20
Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.

2020-08-28
Hasanin, Tawfiq, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2019.  A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :83—88.

Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.

2020-06-01
Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

2020-05-04
Zhang, Meng, Shen, Chao, Han, Sicong.  2019.  A Compensation Control Scheme against DoS Attack for Nonlinear Cyber-Physical Systems. 2019 Chinese Control Conference (CCC). :144–149.

This paper proposes a compensation control scheme against DoS attack for nonlinear cyber-physical systems (CPSs). The dynamical process of the nonlinear CPSs are described by T-S fuzzy model that regulated by the corresponding fuzzy rules. The communication link between the controller and the actuator under consideration may be unreliable, where Denialof-Service (DoS) attack is supposed to invade the communication link randomly. To compensate the negative effect caused by DoS attack, a compensation control scheme is designed to maintain the stability of the closed-loop system. With the aid of the Lyapunov function theory, a sufficient condition is established to ensure the stochastic stability and strict dissipativity of the closed-loop system. Finally, an iterative linearization algorithm is designed to determine the controller gain and the effectiveness of the proposed approach is evaluated through simulations.

2020-06-26
Aung, Tun Myat, Hla, Ni Ni.  2019.  A complex number approach to elliptic curve cryptosystems over finite fields: implementations and experiments. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—8.

Network security is a general idea to ensure information transmission over PC and portable systems. Elliptic curve cryptosystems are nowadays widely used in public communication channels for network security. Their security relies upon the complexity of clarifying the elliptic curve discrete alogarithm issue. But, there are several general attacks in them. Elliptic bend number juggling is actualized over complex fields to enhance the security of elliptic curve cryptosystems. This paper starts with the qualities of elliptic curve cryptosystems and their security administrations. At that point we talk about limited field number-crunching and its properties, prime field number-crunching, twofold field math and complex number-crunching, and elliptic bend number-crunching over prime field and parallel field. This paper proposes how to execute the unpredictable number of math under prime field and double field utilizing java BigInteger class. also, we actualize elliptic bend math and elliptic bend cryptosystems utilizing complex numbers over prime field and double field and talk about our trials that got from the usage.

2020-06-19
Haefner, Kyle, Ray, Indrakshi.  2019.  ComplexIoT: Behavior-Based Trust For IoT Networks. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :56—65.

This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.

2019-12-10
Shiddik, Luthfi Rakha, Novamizanti, Ledya, Ramatryana, I N Apraz Nyoman, Hanifan, Hasya Azqia.  2019.  Compressive Sampling for Robust Video Watermarking Based on BCH Code in SWT-SVD Domain. 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC). :223-227.

The security and confidentiality of the data can be guaranteed by using a technique called watermarking. In this study, compressive sampling is designed and analyzed on video watermarking. Before the watermark compression process was carried out, the watermark was encoding the Bose Chaudhuri Hocquenghem Code (BCH Code). After that, the watermark is processed using the Discrete Sine Transform (DST) and Discrete Wavelet Transform (DWT). The watermark insertion process to the video host using the Stationary Wavelet Transform (SWT), and Singular Value Decomposition (SVD) methods. The results of our system are obtained with the PSNR 47.269 dB, MSE 1.712, and BER 0.080. The system is resistant to Gaussian Blur and rescaling noise attacks.

2020-01-27
Pascucci, Antonio, Masucci, Vincenzo, Monti, Johanna.  2019.  Computational Stylometry and Machine Learning for Gender and Age Detection in Cyberbullying Texts. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). :1–6.

The aim of this paper is to show the importance of Computational Stylometry (CS) and Machine Learning (ML) support in author's gender and age detection in cyberbullying texts. We developed a cyberbullying detection platform and we show the results of performances in terms of Precision, Recall and F -Measure for gender and age detection in cyberbullying texts we collected.

2019-12-17
Li, Ming, Hawrylak, Peter, Hale, John.  2019.  Concurrency Strategies for Attack Graph Generation. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :174-179.

The network attack graph is a powerful tool for analyzing network security, but the generation of a large-scale graph is non-trivial. The main challenge is from the explosion of network state space, which greatly increases time and storage costs. In this paper, three parallel algorithms are proposed to generate scalable attack graphs. An OpenMP-based programming implementation is used to test their performance. Compared with the serial algorithm, the best performance from the proposed algorithms provides a 10X speedup.

2020-06-12
Min, Congwen, Li, Yi, Fang, Li, Chen, Ping.  2019.  Conditional Generative Adversarial Network on Semi-supervised Learning Task. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1448—1452.

Semi-supervised learning has recently gained increasingly attention because it can combine abundant unlabeled data with carefully labeled data to train deep neural networks. However, common semi-supervised methods deeply rely on the quality of pseudo labels. In this paper, we proposed a new semi-supervised learning method based on Generative Adversarial Network (GAN), by using discriminator to learn the feature of both labeled and unlabeled data, instead of generating pseudo labels that cannot all be correct. Our approach, semi-supervised conditional GAN (SCGAN), builds upon the conditional GAN model, extending it to semi-supervised learning by changing the discriminator's output to a classification output and a real or false output. We evaluate our approach with basic semi-supervised model on MNIST dataset. It shows that our approach achieves the classification accuracy with 84.15%, outperforming the basic semi-supervised model with 72.94%, when labeled data are 1/600 of all data.

2020-03-09
Kourai, Kenichi, Shiota, Yuji.  2019.  Consistent Offline Update of Suspended Virtual Machines in Clouds. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :58–65.

In Infrastructure-as-a-Service clouds, there exist many virtual machines (VMs) that are not used for a long time. For such VMs, many vulnerabilities are often found in installed software while VMs are suspended. If security updates are applied to such VMs after the VMs are resumed, the VMs easily suffer from attacks via the Internet. To solve this problem, offline update of VMs has been proposed, but some approaches have to permit cloud administrators to resume users' VMs. The others are applicable only to completely stopped VMs and often corrupt virtual disks if they are applied to suspended VMs. In addition, it is sometimes difficult to accurately emulate security updates offline. In this paper, we propose OUassister, which enables consistent offline update of suspended VMs. OUassister emulates security updates of VMs offline in a non-intrusive manner and applies the emulation results to the VMs online. This separation prevents virtual disks of even suspended VMs from being corrupted. For more accurate emulation of security updates, OUassister provides an emulation environment using a technique called VM introspection. Using this environment, it automatically extracts updated files and executed scripts. We have implemented OUassister in Xen and confirmed that the time for critical online update was largely reduced.

2020-03-02
Ajayi, Oluwaseyi, Igbe, Obinna, Saadawi, Tarek.  2019.  Consortium Blockchain-Based Architecture for Cyber-Attack Signatures and Features Distribution. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0541–0549.

One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain's distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.

2020-02-10
Ke, Qi, Sheng, Lin.  2019.  Content Adaptive Image Steganalysis in Spatial Domain Using Selected Co-Occurrence Features. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :28–33.

In this paper, a general content adaptive image steganography detector in the spatial domain is proposed. We assemble conventional Haar and LBP features to construct local co-occurrence features, then the boosted classifiers are used to assemble the features as well as the final detector, and each weak classifier of the boosted classifiers corresponds to the co-occurrence feature of a local image region. Moreover, the classification ability and the generalization power of the candidate features are both evaluated for decision in the feature selection procedure of boosting training, which makes the final detector more accuracy. The experimental results on standard dataset show that the proposed framework can detect two primary content adaptive stego algorithms in the spatial domain with higher accuracy than the state-of-the-art steganalysis method.

2020-06-02
Gong, Shixun, Li, Na, Wu, Huici, Tao, Xiaofeng.  2019.  Cooperative Two-Key Generation in Source-Type Model With Partial-Trusted Helpers. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :689—694.

This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.

2020-03-02
Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Countermeasure of Lightweight Physical Unclonable Function Against Side-Channel Attack. 2019 Cybersecurity and Cyberforensics Conference (CCC). :30–34.

In industrial internet of things, various devices are connected to external internet. For the connected devices, the authentication is very important in the viewpoint of security; therefore, physical unclonable functions (PUFs) have attracted attention as authentication techniques. On the other hand, the risk of modeling attacks on PUFs, which clone the function of PUFs mathematically, is pointed out. Therefore, a resistant-PUF such as a lightweight PUF has been proposed. However, new analytical methods (side-channel attacks: SCAs), which use side-channel information such as power or electromagnetic waves, have been proposed. The countermeasure method has also been proposed; however, an evaluation using actual devices has not been studied. Since PUFs use small production variations, the implementation evaluation is very important. Therefore, this study proposes a SCA countermeasure of the lightweight PUF. The proposed method is based on the previous studies, and maintains power consumption consistency during the generation of response. In experiments using a field programmable gate array, the measured power consumption was constant regardless of output values of the PUF could be confirmed. Then, experimental results showed that the predicted rate of the response was about 50 %, and the proposed method had a tamper resistance against SCAs.

2020-03-27
Boehm, Barry, Rosenberg, Doug, Siegel, Neil.  2019.  Critical Quality Factors for Rapid, Scalable, Agile Development. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :514–515.

Agile methods frequently have difficulties with qualities, often specifying quality requirements as stories, e.g., "As a user, I need a safe and secure system." Such projects will generally schedule some capability releases followed by safety and security releases, only to discover user-developer misunderstandings and unsecurable agile code, leading to project failure. Very large agile projects also have further difficulties with project velocity and scalability. Examples are trying to use daily standup meetings, 2-week sprints, shared tacit knowledge vs. documents, and dealing with user-developer misunderstandings. At USC, our Parallel Agile, Executable Architecture research project shows some success at mid-scale (50 developers). We also examined several large (hundreds of developers) TRW projects that had succeeded with rapid, high-quality development. The paper elaborates on their common Critical Quality Factors: a concurrent 3-team approach, an empowered Keeper of the Project Vision, and a management approach emphasizing qualities.

2020-04-17
Chen, Yang, Zeng, Hao, Liu, Huijiang.  2019.  Cross-Domain Secure Sharing of Video Based on White-Box Encryption. 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS). :234—238.

In the vertical multi-level public network, the ciphertext video needs to support the distribution of key in the whole network when it is shared across different security domains horizontally. However, the traditional key management mode faces great pressure on the security classification and encryption efficiency, and especially, it cannot fully ensure the security of content and key when sharing across-domains. Based on the above analysis, this paper proposes a cross domain video security sharing solution based on white box encryption theory to improve the security of video data sharing. In this solution, the white box encryption technology is adopted to establish the data sharing background trust mechanism based on the key management center, and we study the white box key protection technology of the video terminal to support the mass level key distribution in the network and the online security generation and replacement of the white box password module, so that the safe and fast cross domain exchange and sharing of video data are realized.

2019-12-16
Zubarev, Dmytro, Skarga-Bandurova, Inna.  2019.  Cross-Site Scripting for Graphic Data: Vulnerabilities and Prevention. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :154–160.

In this paper, we present an overview of the problems associated with the cross-site scripting (XSS) in the graphical content of web applications. The brief analysis of vulnerabilities for graphical files and factors responsible for making SVG images vulnerable to XSS attacks are discussed. XML treatment methods and their practical testing are performed. As a result, the set of rules for protecting the graphic content of the websites and prevent XSS vulnerabilities are proposed.

2020-01-20
Khairullin, Ilias, Bobrov, Vladimir.  2019.  On Cryptographic Properties of Some Lightweight Algorithms and its Application to the Construction of S-Boxes. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1807–1810.

We consider some approaches to the construction of lightweight block ciphers and introduce the definitions for "index of strong nonlinearity" and "index of perfection". For PRESENT, MIDORI, SKINNY, CLEFIA, LILLIPUT mixing and nonlinear properties were evaluated. We obtain the exact values of the exponents for mixing matrices of round functions and the upper bounds for indexes of perfection and strong nonlinearity. It was determined by the experiment that each coordinate function of output block is nonlinear during 500 rounds. We propose the algorithmic realization of 16×16 S-box based on the modified additive generator with lightweight cipher SPECK as a modification which does not demand memory for storage huge substitution tables. The best value of the differential characteristic of such S-box is 18/216, the minimal nonlinearity degree of coordinate functions is equal to 15 and the minimal linear characteristic is 788/215.

2021-01-22
Ramos, E. de Almeida, Filho, J. C. B., Reis, R..  2019.  Cryptography by Synchronization of Hopfield Neural Networks that Simulate Chaotic Signals Generated by the Human Body. 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS). :1–4.

In this work, an asymmetric cryptography method for information security was developed, inspired by the fact that the human body generates chaotic signals, and these signals can be used to create sequences of random numbers. Encryption circuit was implemented in a Reconfigurable Hardware (FPGA). To encode and decode an image, the chaotic synchronization between two dynamic systems, such as Hopfield neural networks (HNNs), was used to simulate chaotic signals. The notion of Homotopy, an argument of topological nature, was used for the synchronization. The results show efficiency when compared to state of the art, in terms of image correlation, histogram analysis and hardware implementation.

2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

2020-06-01
Zhang, Tianchen, Zhang, Taimin, Ji, Xiaoyu, Xu, Wenyuan.  2019.  Cuckoo-RPL: Cuckoo Filter based RPL for Defending AMI Network from Blackhole Attacks. 2019 Chinese Control Conference (CCC). :8920—8925.

Advanced metering infrastructure (AMI) is a key component in the smart grid. Transmitting data robustly and reliably between the tremendous smart meters in the AMI is one of the most crucial tasks for providing various services in smart grid. Among the many efforts for designing practical routing protocols for the AMI, the Routing Protocol for Low-Power and Lossy Networks (RPL) proposed by the IETF ROLL working group is considered the most consolidated candidate. Resent research has shown cyber attacks such as blackhole attack and version number attack can seriously damage the performance of the network implementing RPL. The main reason that RPL is vulnerable to these kinds of attacks is the lack an authentication mechanism. In this paper, we study the impact of blackhole attacks on the performance of the AMI network and proposed a new blackhole attack that can bypass the existing defense mechanism. Then, we propose a cuckoo filter based RPL to defend the AMI network from blackhole attacks. We also give the security analysis of the proposed method.

2022-03-08
Klemas, Thomas, Lively, Rebecca K, Choucri, Nazli.  2019.  Cyber Acquisition. The Cyber Defense Review. :103–120.
The United States of America faces great risk in the cyber domain because our adversaries are growing bolder, increasing in number, improving their capabilities, and doing so rapidly. Meanwhile, the associated technologies are evolving so quickly that progress toward hardening and securing this domain is ephemeral, as systems reach obsolescence in just a few years and revolutionary paradigm shifts, such as cloud computing and ubiquitous mobile devices, can pull the rug out from the best-laid defensive planning by introducing entirely new regimes of operations. Contemplating these facts in the context of Department of Defense (DoD) acquisitions is particularly sobering because many cyber capabilities bought within the traditional acquisition framework may be of limited usefulness by the time that they are delivered to the warfighter. Thus, it is a strategic imperative to improve DoD acquisitions pertaining to cyber capabilities. This paper proposes novel ideas and a framework for addressing these challenges.