Biblio
The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.
In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.
Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].
Malware variants exhibit polymorphic attacks due to the tremendous growth of the present technologies. For instance, ransomware, an astonishingly growing set of monetary-gain threats in the recent years, is peculiarized as one of the most treacherous cyberthreats against innocent individuals and businesses by locking their devices and/or encrypting their files. Many proposed attempts have been introduced by cybersecurity researchers aiming at mitigating the epidemic of the ransomware attacks. However, this type of malware is kept refined by utilizing new evasion techniques, such as sophisticated codes, dynamic payloads, and anti-emulation techniques, in order to survive against detection systems. This paper introduces RanDetector, a new automated and lightweight system for detecting ransomware applications in Android platform based on their behavior. In particular, this detection system investigates the appearance of some information that is related to ransomware operations in an inspected application before integrating some supervised machine learning models to classify the application. RanDetector is evaluated and tested on a dataset of more 450 applications, including benign and ransomware. Hence, RanDetector has successfully achieved more that 97.62% detection rate with nearly zero false positive.
Physical Unclonable Functions (PUFs) are considered as an attractive low-cost security anchor. The unique features of PUFs are dependent on the Nanoscale variations introduced during the manufacturing variations. Most PUFs exhibit an unreliability problem due to aging and inherent sensitivity to the environmental conditions. As a remedy to the reliability issue, helper data algorithms are used in practice. A helper data algorithm generates and stores the helper data in the enrollment phase in a secure environment. The generated helper data are used then for error correction, which can transform the unique feature of PUFs into a reproducible key. The key can be used to encrypt secret data in the security scheme. In contrast, this work shows that the fuzzy PUFs can be used to secret important data directly by an error-tolerant protocol without the enrollment phase and error-correction algorithm. In our proposal, the secret data is locked in a vault leveraging the unique fuzzy pattern of PUF. Although the noise exists, the data can then be released only by this unique PUF. The evaluation was performed on the most prominent intrinsic PUF - DRAM PUF. The test results demonstrate that our proposal can reach an acceptable reconstruction rate in various environment. Finally, the security analysis of the new proposal is discussed.
Named Data Network (NDN) is an alternative to host-centric networking exemplified by today's Internet. One key feature of NDN is in-network caching that reduces access delay and query overhead by caching popular contents at the source as well as at a few other nodes. Unfortunately, in-network caching suffers various privacy risks by different attacks, one of which is termed timing attack. This is an attack to infer whether a consumer has recently requested certain contents based on the time difference between the delivery time of those contents that are currently cached and those that are not cached. In order to prevent the privacy leakage and resist such kind of attacks, we propose a detection scheme by adopting Long Short-term Memory (LSTM) model. Based on the four input features of LSTM, cache hit ratio, average request interval, request frequency, and types of requested contents, we timely capture more important eigenvalues by dividing a constant time window size into a few small slices in order to detect timing attacks accurately. We have performed extensive simulations to compare our scheme with several other state-of-the-art schemes in classification accuracy, detection ratio, false alarm ratio, and F-measure. It has been shown that our scheme possesses a better performance in all cases studied.
With the growing number of streaming services, internet providers are increasingly needing to be able to identify the types of data and content providers that are being used on their networks. Traditional methods, such as IP and port scanning, are not always available for clients using VPNs or with providers using varying IP addresses. As such, in this paper we explore a potential method using neural networks and Markov Decision Process in order to augment deep packet inspection techniques in identifying the source and class of video streaming services.
Due to practical constraints in preventing phishing through public network or insecure communication channels, simple physical unclonable function (PDF)-based authentication protocol with unrestricted queries and transparent responses is vulnerable to modeling and replay attacks. In this paper, we present a PUF-based authentication method to mitigate the practical limitations in applications where a resource-rich server authenticates a device with no strong restriction imposed on the type of PUF designs or any additional protection on the binary channel used for the authentication. Our scheme uses an active deception protocol to prevent machine learning (ML) attacks on a device. The monolithic system makes collection of challenge response pairs (CRPs) easy for model building during enrollment but prohibitively time consuming upon device deployment. A genuine server can perform a mutual authentication with the device at any time with a combined fresh challenge contributed by both the server and the device. The message exchanged in clear does not expose the authentic CRPs. The false PUF multiplexing is fortified against prediction of waiting time by doubling the time penalty for every unsuccessful authentication.
A semi-quantum key distribution (SQKD) protocol allows two users A and B to establish a shared secret key that is secure against an all-powerful adversary E even when one of the users (e.g., B) is semi-quantum or classical in nature while the other is fully-quantum. A mediated SQKD protocol allows two semi-quantum users to establish a key with the help of an adversarial quantum server. We introduce the concept of a multi-mediated SQKD protocol where two (or more) adversarial quantum servers are used. We construct a new protocol in this model and show how it can withstand high levels of quantum noise, though at a cost to efficiency. We perform an information theoretic security analysis and, along the way, prove a general security result applicable to arbitrary MM-SQKD protocols. Finally, a comparison is made to previous (S)QKD protocols.