Biblio

Found 19604 results

2019-10-30
Bugeja, Joseph, Vogel, Bahtijar, Jacobsson, Andreas, Varshney, Rimpu.  2019.  IoTSM: An End-to-End Security Model for IoT Ecosystems. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :267-272.

The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.

2020-12-01
Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

2020-05-22
Jaiswal, Supriya, Ballal, Makarand Sudhakar.  2019.  A Novel Online Technique for Fixing the Accountability of Harmonic Injector in Distribution Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1—7.

Harmonic distortions come into existence in the power system not only due to nonlinear loads of consumers but also due to custom power devices used by power utilities. These distortions are harmful to the power networks as these produce over heating of appliances, reduction in their life expectancy, increment in electricity bill, false tripping, etc. This paper presents an effective, simple and direct approach to identify the problematic cause either consumer load or utility source or both responsible for harmonics injection in the power system. This technique does not require mathematical model, historical data and expert knowledge. The online methodology is developed in the laboratory and tested for different polluted loads and source conditions. Experimental results are found satisfactory. This proposed technique has substantial potential to determine the problematic cause without any power interruption by plug and play operation just like CCTV.

2020-12-11
Kousri, M. R., Deniau, V., Gransart, C., Villain, J..  2019.  Optimized Time-Frequency Processing Dedicated to the Detection of Jamming Attacks on Wi-Fi Communications. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). :1—4.

Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.

2020-10-16
Al-Haj, Ali, Farfoura, Mahmoud.  2019.  Providing Security for E-Government Document Images Using Digital Watermarking in the Frequency Domain. 2019 5th International Conference on Information Management (ICIM). :77—81.

Many countries around the world have realized the benefits of the e-government platform in peoples' daily life, and accordingly have already made partial implementations of the key e-government processes. However, before full implementation of all potential services can be made, governments demand the deployment of effective information security measures to ensure secrecy and privacy of their citizens. In this paper, a robust watermarking algorithm is proposed to provide copyright protection for e-government document images. The proposed algorithm utilizes two transforms: the Discrete Wavelet Transformation (DWT) and the Singular Value Decomposition (SVD). Experimental results demonstrate that the proposed e-government document images watermarking algorithm performs considerably well compared to existing relevant algorithms.

2020-06-26
Shengquan, Wang, Xianglong, Li, Ang, Li, Shenlong, Jiang.  2019.  Research on Iris Edge Detection Technology based on Daugman Algorithm. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :308—311.

In the current society, people pay more and more attention to identity security, especially in the case of some highly confidential or personal privacy, one-to-one identification is particularly important. The iris recognition just has the characteristics of high efficiency, not easy to be counterfeited, etc., which has been promoted as an identity technology. This paper has carried out research on daugman algorithm and iris edge detection.

2020-07-10
Reshmi, T S, Daniel Madan Raja, S.  2019.  A Review on Self Destructing Data:Solution for Privacy Risks in OSNs. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :231—235.

Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.

2020-12-01
Xie, Y., Bodala, I. P., Ong, D. C., Hsu, D., Soh, H..  2019.  Robot Capability and Intention in Trust-Based Decisions Across Tasks. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :39—47.

In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots - inferred capability and intention - and their relationship to overall trust and eventual decisions. In particular, we examine delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.

2020-12-11
Hassan, S. U., Khan, M. Zeeshan, Khan, M. U. Ghani, Saleem, S..  2019.  Robust Sound Classification for Surveillance using Time Frequency Audio Features. 2019 International Conference on Communication Technologies (ComTech). :13—18.

Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.

2020-05-22
Jemal, Jay, Kornegay, Kevin T..  2019.  Security Assessment of Blockchains in Heterogenous IoT Networks : Invited Presentation. 2019 53rd Annual Conference on Information Sciences and Systems (CISS). :1—4.

As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis.

2020-08-28
Khomytska, Iryna, Teslyuk, Vasyl.  2019.  The Software for Authorship and Style Attribution. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). :1—4.

A new program has been developed for style and authorship attribution. Differentiation of styles by transcription symbols has proved to be efficient The novel approach involves a combination of two ways of transforming texts into their transcription variants. The java programming language makes it possible to improve efficiency of style and authorship attribution.

2020-09-18
Jayapalan, Avila, Savarinathan, Prem, Priya, Apoorva.  2019.  SystemVue based Secure data transmission using Gold codes. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1—4.

Wireless technology has seen a tremendous growth in the recent past. Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme has been utilized in almost all the advanced wireless techniques because of the advantages it offers. Hence in this aspect, SystemVue based OFDM transceiver has been developed with AWGN as the channel noise. To mitigate the channel noise Convolutional code with Viterbi decoder has been depicted. Further to protect the information from the malicious users the data is scrambled with the aid of gold codes. The performance of the transceiver is analysed through various Bit Error Rate (BER) versus Signal to Noise Ratio (SNR) graphs.

2020-02-10
Velmurugan, K.Jayasakthi, Hemavathi, S..  2019.  Video Steganography by Neural Networks Using Hash Function. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:55–58.

Video Steganography is an extension of image steganography where any kind of file in any extension is hidden into a digital video. The video content is dynamic in nature and this makes the detection of hidden data difficult than other steganographic techniques. The main motive of using video steganography is that the videos can store large amount of data in it. This paper focuses on security using the combination of hybrid neural networks and hash function for determining the best bits in the cover video to embed the secret data. For the embedding process, the cover video and the data to be hidden is uploaded. Then the hash algorithm and neural networks are applied to form the stego video. For the extraction process, the reverse process is applied and the secret data is obtained. All experiments are done using MatLab2016a software.

2020-12-01
Geiskkovitch, D. Y., Thiessen, R., Young, J. E., Glenwright, M. R..  2019.  What? That's Not a Chair!: How Robot Informational Errors Affect Children's Trust Towards Robots 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :48—56.

Robots that interact with children are becoming more common in places such as child care and hospital environments. While such robots may mistakenly provide nonsensical information, or have mechanical malfunctions, we know little of how these robot errors are perceived by children, and how they impact trust. This is particularly important when robots provide children with information or instructions, such as in education or health care. Drawing inspiration from established psychology literature investigating how children trust entities who teach or provide them with information (informants), we designed and conducted an experiment to examine how robot errors affect how young children (3-5 years old) trust robots. Our results suggest that children utilize their understanding of people to develop their perceptions of robots, and use this to determine how to interact with robots. Specifically, we found that children developed their trust model of a robot based on the robot's previous errors, similar to how they would for a person. We however failed to replicate other prior findings with robots. Our results provide insight into how children as young as 3 years old might perceive robot errors and develop trust.

2020-10-14
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
2020-03-09
Portolan, Michele, Savino, Alessandro, Leveugle, Regis, Di Carlo, Stefano, Bosio, Alberto, Di Natale, Giorgio.  2019.  Alternatives to Fault Injections for Early Safety/Security Evaluations. 2019 IEEE European Test Symposium (ETS). :1–10.
Functional Safety standards like ISO 26262 require a detailed analysis of the dependability of components subjected to perturbations. Radiation testing or even much more abstract RTL fault injection campaigns are costly and complex to set up especially for SoCs and Cyber Physical Systems (CPSs) comprising intertwined hardware and software. Moreover, some approaches are only applicable at the very end of the development cycle, making potential iterations difficult when market pressure and cost reduction are paramount. In this tutorial, we present a summary of classical state-of-the-art approaches, then alternative approaches for the dependability analysis that can give an early yet accurate estimation of the safety or security characteristics of HW-SW systems. Designers can rely on these tools to identify issues in their design to be addressed by protection mechanisms, ensuring that system dependability constraints are met with limited risk when subjected later to usual fault injections and to e.g., radiation testing or laser attacks for certification.
2020-04-17
Wang, Congli, Lin, Jingqiang, Li, Bingyu, Li, Qi, Wang, Qiongxiao, Zhang, Xiaokun.  2019.  Analyzing the Browser Security Warnings on HTTPS Errors. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
HTTPS provides authentication, data confidentiality, and integrity for secure web applications in the Internet. In order to establish secure connections with the target website but not a man-in-the-middle or impersonation attacker, a browser shows security warnings to users, when different HTTPS errors happen (e.g., it fails to build a valid certificate chain, or the certificate subject does not match the domain visited). Each browser implements its own design of warnings on HTTPS errors, to balance security and usability. This paper presents a list of common HTTPS errors, and we investigate the browser behaviors on each error. Our study discloses browser defects on handling HTTPS errors in terms of cryptographic algorithm, certificate verification, name validation, HPKP, and HSTS.
2020-01-20
Yihunie, Fekadu, Abdelfattah, Eman, Regmi, Amish.  2019.  Applying Machine Learning to Anomaly-Based Intrusion Detection Systems. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–5.

The enormous growth of Internet-based traffic exposes corporate networks with a wide variety of vulnerabilities. Intrusive traffics are affecting the normal functionality of network's operation by consuming corporate resources and time. Efficient ways of identifying, protecting, and mitigating from intrusive incidents enhance productivity. As Intrusion Detection System (IDS) is hosted in the network and at the user machine level to oversee the malicious traffic in the network and at the individual computer, it is one of the critical components of a network and host security. Unsupervised anomaly traffic detection techniques are improving over time. This research aims to find an efficient classifier that detects anomaly traffic from NSL-KDD dataset with high accuracy level and minimal error rate by experimenting with five machine learning techniques. Five binary classifiers: Stochastic Gradient Decent, Random Forests, Logistic Regression, Support Vector Machine, and Sequential Model are tested and validated to produce the result. The outcome demonstrates that Random Forest Classifier outperforms the other four classifiers with and without applying the normalization process to the dataset.

2020-07-30
Wang, Tianhao, Kerschbaum, Florian.  2019.  Attacks on Digital Watermarks for Deep Neural Networks. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2622—2626.
Training deep neural networks is a computationally expensive task. Furthermore, models are often derived from proprietary datasets that have been carefully prepared and labelled. Hence, creators of deep learning models want to protect their models against intellectual property theft. However, this is not always possible, since the model may, e.g., be embedded in a mobile app for fast response times. As a countermeasure watermarks for deep neural networks have been developed that embed secret information into the model. This information can later be retrieved by the creator to prove ownership. Uchida et al. proposed the first such watermarking method. The advantage of their scheme is that it does not compromise the accuracy of the model prediction. However, in this paper we show that their technique modifies the statistical distribution of the model. Using this modification we can not only detect the presence of a watermark, but even derive its embedding length and use this information to remove the watermark by overwriting it. We show analytically that our detection algorithm follows consequentially from their embedding algorithm and propose a possible countermeasure. Our findings shall help to refine the definition of undetectability of watermarks for deep neural networks.
2020-06-29
Jamader, Asik Rahaman, Das, Puja, Acharya, Biswa Ranjan.  2019.  BcIoT: Blockchain based DDos Prevention Architecture for IoT. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :377–382.
The Internet of Things (IoT) visualizes a massive network with billions of interaction among smart things which are capable of contributing all sorts of services. Self-configuring things (nodes) are connected dynamically with a global network in IoT scenario. The small things are widely spread in a real world paradigm with minimal processing capacity and limited storage. The recent IoT technologies have more concerns about the security, privacy and reliability. Sharing personal data over the centralized system still remains as a challenging task. If the infrastructure is able to provide the assurance for transferring the data but for now it requires special attention on security and data consistency. Because, centralized system and infrastructure is viewed as a more attractive point for hacker or cyber-attacker. To solve this we present a secured smart contract based on Blockchain to develop a secured communicative network. A Hash based secret key is used for encryption and decryption purposes. A demo attack is done for developing a better understanding on blockchain technology in terms of their comparison and calculation.
2020-09-14
Chatterjee, Urbi, Govindan, Vidya, Sadhukhan, Rajat, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra, Mahata, Debashis, Prabhu, Mukesh M..  2019.  Building PUF Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing. 16:424–437.
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such mechanism, it puts forward an open problem of how to develop such mechanism without needing to store the secret challenge-response pair (CRP) explicitly at the verifier end. In this paper, we develop an authentication and key exchange protocol by combining the ideas of Identity based Encryption (IBE), PUFs and Key-ed Hash Function to show that this combination can help to do away with this requirement. The security of the protocol is proved formally under the Session Key Security and the Universal Composability Framework. A prototype of the protocol has been implemented to realize a secured video surveillance camera using a combination of an Intel Edison board, with a Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA, together serving as the IoT node. We show, though the stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard network penetration tools, the camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT infrastructure making the protocol deployable for the industry.
2020-02-10
Li, Meng, Wu, Bin, Wang, Yaning.  2019.  Comment Spam Detection via Effective Features Combination. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Comment spam is one of the great challenges faced by forum administrators. Detecting and blocking comment spam can relieve the load on servers, improve user experience and purify the network conditions. This paper focuses on the detection of comment spam. The behaviors of spammer and the content of spam were analyzed. According to analysis results, two types of effective features are extracted which can make a better description of spammer characteristics. Additionally, a gradient boosting tree algorithm was used to construct the comment spam detector based on the extracted features. Our proposed method is examined on a blog spam dataset which was published by previous research, and the result illustrates that our method performs better than the previous method on detection accuracy. Moreover, the CPU time is recorded to demonstrate that the time spent on both training and testing maintains a small value.

2020-01-20
Melendez, Carlos, Diaz, Matias, Rojas, Felix, Cardenas, Roberto, Espinoza, Mauricio.  2019.  Control of a Double Fed Induction Generator based Wind Energy Conversion System equipped with a Modular Multilevel Matrix Converter. 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). :1–11.

During the last years, the Modular Multilevel Matrix Converter (M3C) has been investigated due to its capacity tooperate in high voltage and power levels. This converter is appropriate for Wind Energy Conversion Systems (WECSs), due to its advantages such as redundancy, high power quality, expandability and control flexibility. For Double-Fed Induction Generator (DFIG) WECSs, the M3C has advantages additional benefits, for instance, high power density in the rotor, with a more compact modular converter, and control of bidirectional reactive power flow. Therefore, this paper presents a WECS composed of a DFIG and an M3C. The modelling and control of this WECS topology are described and analyzed in this paper. Additionally, simulation results are presented to validate the effectiveness of this proposal.

2020-02-17
Kim, Joonsoo, Kim, Kyeongho, Jang, Moonsu.  2019.  Cyber-Physical Battlefield Platform for Large-Scale Cybersecurity Exercises. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1–19.
In this study, we propose a platform upon which a cyber security exercise environment can be built efficiently for national critical infrastructure protection, i.e. a cyber-physical battlefield (CPB), to simulate actual ICS/SCADA systems in operation. Among various design considerations, this paper mainly discusses scalability, mobility, reality, extensibility, consideration of the domain or vendor specificities, and the visualization of physical facilities and their damage as caused by cyber attacks. The main purpose of the study was to develop a platform that can maximize the coverage that encompasses such design considerations. We discuss the construction of the platform through the final design choices. The features of the platform that we attempt to achieve are closely related to the target cyber exercise format. Design choices were made considering the construction of a realistic ICS/SCADA exercise environment that meets the goals and matches the characteristics of the Cyber Conflict Exercise (CCE), an annual national exercise organized by the National Security Research Institute (NSR) of South Korea. CCE is a real-time attack-defense battlefield drill between 10 red teams who try to penetrate a multi-level organization network and 16 blue teams who try to defend the network. The exercise platform provides scalability and a significant degree of freedom in the design of a very large-scale CCE environment. It also allowed us to fuse techniques such as 3D-printing and augmented reality (AR) to achieve the exercise goals. This CPB platform can also be utilized in various ways for different types of cybersecurity exercise. The successful application of this platform in Locked Shields 2018 (LS18) is strong evidence of this; it showed the great potential of this platform to integrate high-level strategic or operational exercises effectively with low-level technical exercises. This paper also discusses several possible improvements of the platform which could be made for better integration, as well as various exercise environments that can be constructed given the scalability and extensibility of the platform.
2020-01-27
Salamai, Abdullah, Hussain, Omar, Saberi, Morteza.  2019.  Decision Support System for Risk Assessment Using Fuzzy Inference in Supply Chain Big Data. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS). :248–253.

Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.