Biblio
Virtualization of Internet of Things(IoT) is a concept of dynamically building customized high-level IoT services which rely on the real time data streams from low-level physical IoT sensors. Security in IoT virtualization is challenging, because with the growing number of available (building block) services, the number of personalizable virtual services grows exponentially. This paper proposes Service Object Capability(SOC) ticket system, a decentralized access control mechanism between servers and clients to efficiently authenticate and authorize each other without using public key cryptography. SOC supports decentralized partial delegation of capabilities specified in each server/client ticket. Unlike PKI certificates, SOC's authentication time and handshake packet overhead stays constant regardless of each capability's delegation hop distance from the root delegator. The paper compares SOC's security benefifits with Kerberos and the experimental results show SOC's authentication incurs significantly less time packet overhead compared against those from other mechanisms based on RSA-PKI and ECC-PKI algorithms. SOC is as secure as, and more efficient and suitable for IoT environments, than existing PKIs and Kerberos.
This paper describes a novel aerospace electronic component risk assessment methodology and supporting virtual laboratory structure designed to augment existing supply chain management practices and aid in Microelectronics Trust Assurance. This toolkit and methodology applies structure to the unclear and evolving risk assessment problem, allowing quantification of key risks affecting both advanced and obsolete systems that rely on semiconductor technologies. The impacts of logistics & supply chain risk, technology & counterfeit risk, and faulty component risk on trusted and non-trusted procurement options are quantified. The benefits of component testing on part reliability are assessed and incorporated into counterfeit mitigation calculations. This toolkit and methodology seek to assist acquisition staff by providing actionable decision data regarding the increasing threat of counterfeit components by assessing the risks faced by systems, identifying mitigation strategies to reduce this risk, and resolving these risks through the optimal test and procurement path based on the component criticality risk tolerance of the program.
As modern unmanned aerial systems (UAS) continue to expand the frontiers of automation, new challenges to security and thus its safety are emerging. It is now difficult to completely secure modern UAS platforms due to their openness and increasing complexity. We present the VirtualDrone Framework, a software architecture that enables an attack-resilient control of modern UAS. It allows the system to operate with potentially untrustworthy software environment by virtualizing the sensors, actuators, and communication channels. The framework provides mechanisms to monitor physical and logical system behaviors and to detect security and safety violations. Upon detection of such an event, the framework switches to a trusted control mode in order to override malicious system state and to prevent potential safety violations. We built a prototype quadcoper running an embedded multicore processor that features a hardware-assisted virtualization technology. We present extensive experimental study and implementation details, and demonstrate how the framework can ensure the robustness of the UAS in the presence of security breaches.
A visible nearest neighbor (VNN) query returns the k nearest objects that are visible to a query point, which is used to support various applications such as route planning, target monitoring, and antenna placement. However, with the proliferation of wireless communications and advances in positioning technology for mobile equipments, efficiently searching for VNN among moving objects are required. While most previous work on VNN query focused on static objects, in this paper, we treats the objects as moving consecutively when indexing them, and study the visible nearest neighbor query for moving objects (MVNN) . Assuming that the objects are represented as trajectories given by linear functions of time, we propose a scheme which indexes the moving objects by time-parameterized R-tree (TPR-tree) and obstacles by R-tree. The paper offers four heuristics for visibility and space pruning. New algorithms, Post-pruning and United-pruning, are developed for efficiently solving MVNN queries with all four heuristics. The effectiveness and efficiency of our solutions are verified by extensive experiments over synthetic datasets on real road network.
NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.
Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.
Security in virtualised environments is becoming increasingly important for institutions, not only for a firm's own on-site servers and network but also for data and sites that are hosted in the cloud. Today, security is either handled globally by the cloud provider, or each customer needs to invest in its own security infrastructure. This paper proposes a Virtual Security Operation Center (VSOC) that allows to collect, analyse and visualize security related data from multiple sources. For instance, a user can forward log data from its firewalls, applications and routers in order to check for anomalies and other suspicious activities. The security analytics provided by the VSOC are comparable to those of commercial security incident and event management (SIEM) solutions, but are deployed as a cloud-based solution with the additional benefit of using big data processing tools to handle large volumes of data. This allows us to detect more complex attacks that cannot be detected with todays signature-based (i.e. rules) SIEM solutions.
PAKE protocols, for Password-Authenticated Key Exchange, enable two parties to establish a shared cryptographically strong key over an insecure network using a short common secret as authentication means. After the seminal work by Bellovin and Merritt, with the famous EKE, for Encrypted Key Exchange, various settings and security notions have been defined, and many protocols have been proposed. In this paper, we revisit the promising SPEKE, for Simple Password Exponential Key Exchange, proposed by Jablon. The only known security analysis works in the random oracle model under the CDH assumption, but in the multiplicative groups of finite fields only (subgroups of Zp*), which means the use of large elements and so huge communications and computations. Our new instantiation (TBPEKE, for Two-Basis Password Exponential Key Exchange) applies to any group, and our security analysis requires a DLIN-like assumption to hold. In particular, one can use elliptic curves, which leads to a better efficiency, at both the communication and computation levels. We additionally consider server corruptions, which immediately leak all the passwords to the adversary with symmetric PAKE. We thus study an asymmetric variant, also known as VPAKE, for Verifier-based Password Authenticated Key Exchange. We then propose a verifier-based variant of TBPEKE, the so-called VTBPEKE, which is also quite efficient, and resistant to server-compromise.
This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.
under review
Major online messaging services such as Facebook Messenger and WhatsApp are starting to provide users with real-time information about when people read their messages, while useful, the feature has the potential to negatively impact privacy as well as cause concern over access to self. We report on two surveys using Mechanical Turk which looked at senders' (N=402\vphantom\\ use of and reactions to the `message seen' feature, and recipients' (N=316) privacy and signaling behaviors in the face of such visibility. Our findings indicate that senders experience a range of emotions when their message is not read, or is read but not answered immediately. Recipients also engage in various signaling behaviors in the face of visibility by both replying or not replying immediately.
Trustworthy operation of industrial control systems depends on secure and real-time code execution on the embedded programmable logic controllers (PLCs). The controllers monitor and control the critical infrastructures, such as electric power grids and healthcare platforms, and continuously report back the system status to human operators. We present Zeus, a contactless embedded controller security monitor to ensure its execution control flow integrity. Zeus leverages the electromagnetic emission by the PLC circuitry during the execution of the controller programs. Zeus's contactless execution tracking enables non-intrusive monitoring of security-critical controllers with tight real-time constraints. Those devices often cannot tolerate the cost and performance overhead that comes with additional traditional hardware or software monitoring modules. Furthermore, Zeus provides an air-gap between the monitor (trusted computing base) and the target (potentially compromised) PLC. This eliminates the possibility of the monitor infection by the same attack vectors. Zeus monitors for control flow integrity of the PLC program execution. Zeus monitors the communications between the human machine interface and the PLC, and captures the control logic binary uploads to the PLC. Zeus exercises its feasible execution paths, and fingerprints their emissions using an external electromagnetic sensor. Zeus trains a neural network for legitimate PLC executions, and uses it at runtime to identify the control flow based on PLC's electromagnetic emissions. We implemented Zeus on a commercial Allen Bradley PLC, which is widely used in industry, and evaluated it on real-world control program executions. Zeus was able to distinguish between different legitimate and malicious executions with 98.9% accuracy and with zero overhead on PLC execution by design.
Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. Recent studies on decoy routing consider all decoy routing systems to be susceptible to a fundamental attack – regardless of their specific designs–in which the censors re-route traffic around decoy ASes, thereby preventing censored users from using such systems. In this paper, we propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to all previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it downstream-only decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Designing a downstream-only decoy routing system is a challenging engineering problem since decoy routers do not intercept the upstream traffic of censored users. We design the first downstream-only decoy routing system, called Waterfall, by devising unique covert communication mechanisms. We also use various techniques to make our Waterfall implementation resistant to traffic analysis attacks. We believe that downstream-only decoy routing is a significant step towards making decoy routing systems practical. This is because a downstream-only decoy routing system can be deployed using a significantly smaller number of volunteer ASes, given a target resistance to rerouting attacks. For instance, we show that a Waterfall implementation with only a single decoy AS is as resistant to routing attacks (against China) as a traditional decoy system (e.g., Telex) with 53 decoy ASes.
As increasingly more enterprises are deploying cloud file-sharing services, this adds a new channel for potential insider threats to company data and IPs. In this paper, we introduce a two-stage machine learning system to detect anomalies. In the first stage, we project the access logs of cloud file-sharing services onto relationship graphs and use three complementary graph-based unsupervised learning methods: OddBall, PageRank and Local Outlier Factor (LOF) to generate outlier indicators. In the second stage, we ensemble the outlier indicators and introduce the discrete wavelet transform (DWT) method, and propose a procedure to use wavelet coefficients with the Haar wavelet function to identify outliers for insider threat. The proposed system has been deployed in a real business environment, and demonstrated effectiveness by selected case studies.
Now a day, need for fast accessing of data is increasing with the exponential increase in the security field. QR codes have served as a useful tool for fast and convenient sharing of data. But with increased usage of QR Codes have become vulnerable to attacks such as phishing, pharming, manipulation and exploitation. These security flaws could pose a danger to an average user. In this paper we have proposed a way, called Secured QR (SQR) to fix all these issues. In this approach we secure a QR code with the help of a key in generator side and the same key is used to get the original information at scanner side. We have used AES algorithm for this purpose. SQR approach is applicable when we want to share/use sensitive information in the organization such as sharing of profile details, exchange of payment information, business cards, generation of electronic tickets etc.
Wearables, such as Fitbit, Apple Watch, and Microsoft Band, with their rich collection of sensors, facilitate the tracking of healthcare- and wellness-related metrics. However, the assessment of the physiological metrics collected by these devices could also be useful in identifying the user of the wearable, e.g., to detect unauthorized use or to correctly associate the data to a user if wearables are shared among multiple users. Further, researchers and healthcare providers often rely on these smart wearables to monitor research subjects and patients in their natural environments over extended periods of time. Here, it is important to associate the sensed data with the corresponding user and to detect if a device is being used by an unauthorized individual, to ensure study compliance. Existing one-time authentication approaches using credentials (e.g., passwords, certificates) or trait-based biometrics (e.g., face, fingerprints, iris, voice) might fail, since such credentials can easily be shared among users. In this paper, we present a continuous and reliable wearable-user authentication mechanism using coarse-grain minute-level physical activity (step counts) and physiological data (heart rate, calorie burn, and metabolic equivalent of task). From our analysis of 421 Fitbit users from a two-year long health study, we are able to statistically distinguish nearly 100% of the subject-pairs and to identify subjects with an average accuracy of 92.97%.
Measuring fidgeting is an important goal for the psychology of mind-wandering and for human computer interaction (HCI). Previous work measuring the movement of the head, torso and thigh during HCI has shown that engaging screen content leads to non-instrumental movement inhibition (NIMI). Camera-based methods for measuring wrist movements are limited by occlusions. Here we used a high pass filtered magnitude of wearable tri-axial accelerometer recordings during 2-minute passive HCI stimuli as a surrogate for movement of the wrists and ankles. With 24 seated, healthy volunteers experiencing HCI, this metric showed that wrists moved significantly more than ankles. We found that NIMI could be detected in the wrists and ankles; it distinguished extremes of interest and boredom via restlessness. We conclude that both free-willed and forced screen engagement can elicit NIMI of the wrists and ankles.
Smart energy meters record electricity consumption and generation at fine-grained intervals, and are among the most widely deployed sensors in the world. Energy data embeds detailed information about a building's energy-efficiency, as well as the behavior of its occupants, which academia and industry are actively working to extract. In many cases, either inadvertently or by design, these third-parties only have access to anonymous energy data without an associated location. The location of energy data is highly useful and highly sensitive information: it can provide important contextual information to improve big data analytics or interpret their results, but it can also enable third-parties to link private behavior derived from energy data with a particular location. In this paper, we present Weatherman, which leverages a suite of analytics techniques to localize the source of anonymous energy data. Our key insight is that energy consumption data, as well as wind and solar generation data, largely correlates with weather, e.g., temperature, wind speed, and cloud cover, and that every location on Earth has a distinct weather signature that uniquely identifies it. Weatherman represents a serious privacy threat, but also a potentially useful tool for researchers working with anonymous smart meter data. We evaluate Weatherman's potential in both areas by localizing data from over one hundred smart meters using a weather database that includes data from over 35,000 locations. Our results show that Weatherman localizes coarse (one-hour resolution) energy consumption, wind, and solar data to within 16.68km, 9.84km, and 5.12km, respectively, on average, which is more accurate using much coarser resolution data than prior work on localizing only anonymous solar data using solar signatures.
Wikipedia is one of the most popular information platforms on the Internet. The user access pattern to Wikipedia pages depends on their relevance in the current worldwide social discourse. We use publically available statistics about the top-1000 most popular pages on each day to estimate the efficiency of caches for support of the platform. While the data volumes are moderate, the main goal of Wikipedia caches is to reduce access times for page views and edits. We study the impact of most popular pages on the achievable cache hit rate in comparison to Zipf request distributions and we include daily dynamics in popularity.
This paper develops a model for Wells turbine using Xilinx system generator (XSG)toolbox of Matlab. The Wells turbine is very popular in oscillating water column (OWC) wave energy converters. Mostly, the turbine behavior is emulated in a controlled DC or AC motor coupled with a generator. Therefore, it is required to model the OWC and Wells turbine in real time software like XSG. It generates the OWC turbine behavior in real time. Next, a PI control scheme is suggested for controlling the DC motor so as to emulate the Wells turbine efficiently. The overall performance of the system is tested with asquirrel cage induction generator (SCIG). The Pierson-Moskowitz and JONSWAP irregular wave models have been applied to validate the OWC model. Finally, the simulation results for Wells turbine and PI controller have beendiscussed.
Deception technology involves the generation of traps or deception decoys. The use of deception technology can help fool hackers into thinking that they have gained access to assets such as workstations, servers, applications, and more, in a real environment. Security teams can observe and monitor the operations, navigation, and tools of the hackers without the concern that any damage will occur on real assets. It is possible to detect breaches early, reduce false positives, and more, using deception technology.
The aim of deception technology is to prevent a cybercriminal that has managed to infiltrate a network from doing any significant damage. The technology works by generating traps or deception decoys that mimic legitimate technology assets throughout the infrastructure.