Biblio
Power grid infrastructures have been exposed to several terrorists and cyber attacks from different perspectives and have resulted in critical system failures. Among different attack strategies, simultaneous attack is feasible for the attacker if enough resources are available at the moment. In this paper, vulnerability analysis for simultaneous attack is investigated, using a modified cascading failure simulator with reduced calculation time than the existing methods. A new damage measurement matrix is proposed with the loss of generation power and time to reach the steady-state condition. The combination of attacks that can result in a total blackout in the shortest time are considered as the strongest simultaneous attack for the system from attacker's viewpoint. The proposed approach can be used for general power system test cases. In this paper, we conducted the experiments on W&W 6 bus system and IEEE 30 bus system for demonstration of the result. The modified simulator can automatically find the strongest attack combinations for reaching maximum damage in terms of generation power loss and time to reach black-out.
Today's increasingly populous cities require intelligent transportation systems that make efficient use of existing transportation infrastructure. However, inefficient traffic management is pervasive, costing US\$160 billion in the United States in 2015, including 6.9 billion hours of additional travel time and 3.1 billion gallons of wasted fuel. To mitigate these costs, the next generation of transportation systems will include connected vehicles, connected infrastructure, and increased automation. In addition, these advances must coexist with legacy technology into the foreseeable future. This complexity makes the goal of improved mobility and safety even more daunting.
\textbf{Best Student Paper Award}
In a smart city, real-time traffic sensors may be deployed for various applications, such as route planning. Unfortunately, sensors are prone to failures, which result in erroneous traffic data. Erroneous data can adversely affect applications such as route planning, and can cause increased travel time and environmental impact. To minimize the impact of sensor failures, we must detect them promptly and with high accuracy. However, typical detection algorithms may lead to a large number of false positives (i.e., false alarms) and false negatives (i.e., missed detections), which can result in suboptimal route planning. In this paper, we devise an effective detector for identifying faulty traffic sensors using a prediction model based on Gaussian Processes. Further, we present an approach for computing the optimal parameters of the detector which minimize losses due to falsepositive and false-negative errors. We also characterize critical sensors, whose failure can have high impact on the route planning application. Finally, we implement our method and evaluate it numerically using a real-world dataset and the route planning platform OpenTripPlanner.
Cyber Physical Systems (CPS) are composed of multiple physical and computing components that are deeply intertwined, operate on differing spatial and temporal scales, and interact with one another in fluid, context dependent, manners. Cyber Physical Systems often include smart components that use local adaptation to improve whole system performance or to provide damage response. Evolvable and Adaptive Hardware (EAH) components, at least conceptually, are often represented as an enabling technology for such smart components. This paper will outline one approach to applying CPS thinking to better address a growing need to address Verification and Validation (V&V) questions related to the use of EAH smart components. It will argue that, perhaps fortuitously, the very adaptations EAH smart components employ for performance improvement may also be employed to maintain V&V capability.
In this paper, we study the sensor placement problem in urban water networks that maximizes the localization of pipe failures given that some sensors give incorrect outputs. False output of a sensor might be the result of degradation in sensor's hardware, software fault, or might be due to a cyber-attack on the sensor. Incorrect outputs from such sensors can have any possible values which could lead to an inaccurate localization of a failure event. We formulate the optimal sensor placement problem with erroneous sensors as a set multicover problem, which is NP-hard, and then discuss a polynomial time heuristic to obtain efficient solutions. In this direction, we first examine the physical model of the disturbance propagating in the network as a result of a failure event, and outline the multi-level sensing model that captures several event features. Second, using a combinatorial approach, we solve the problem of sensor placement that maximizes the localization of pipe failures by selecting $m$ sensors out of which at most $e$ give incorrect outputs. We propose various localization performance metrics, and numerically evaluate our approach on a benchmark and a real water distribution network. Finally, using computational experiments, we study relationships between design parameters such as the total number of sensors, the number of sensors with errors, and extracted signal features.
The Dark Web is known as the part of the Internet operated by decentralized and anonymous-preserving protocols like Tor. To date, the research community has focused on understanding the size and characteristics of the Dark Web and the services and goods that are offered in its underground markets. However, little is still known about the attacks landscape in the Dark Web. For the traditional Web, it is now well understood how websites are exploited, as well as the important role played by Google Dorks and automated attack bots to form some sort of "background attack noise" to which public websites are exposed. This paper tries to understand if these basic concepts and components have a parallel in the Dark Web. In particular, by deploying a high interaction honeypot in the Tor network for a period of seven months, we conducted a measurement study of the type of attacks and of the attackers behavior that affect this still relatively unknown corner of the Web.
Code reuse detection is a key technique in reverse engineering. However, existing source code similarity comparison techniques are not applicable to binary code. Moreover, compilers have made this problem even more difficult due to the fact that different assembly code and control flow structures can be generated by the compilers even when implementing the same functionality. To address this problem, we present a fuzzy matching approach to compare two functions. We first obtain an initial mapping between basic blocks by leveraging the concept of longest common subsequence on the basic block level and execution path level. We then extend the achieved mapping using neighborhood exploration. To make our approach applicable to large data sets, we designed an effective filtering process using Minhashing. Based on the proposed approach, we implemented a tool named BinSequence and conducted extensive experiments with it. Our results show that given a large assembly code repository with millions of functions, BinSequence is efficient and can attain high quality similarity ranking of assembly functions with an accuracy of above 90%. We also present several practical use cases including patch analysis, malware analysis and bug search.
The Internet of Things (IoT) is transforming the way we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. However, the vulnerabilities in the IoT supply chain have raised serious concerns about the security and trustworthiness of IoT devices and components within them. Testing for device provenance, detection of counterfeit integrated circuits (ICs) and systems, and traceability of IoT devices are challenging issues to address. In this article, we develop a novel radio-frequency identification (RFID)-based system suitable for counterfeit detection, traceability, and authentication in the IoT supply chain called CDTA. CDTA is composed of different types of on-chip sensors and in-system structures that collect necessary information to detect multiple counterfeit IC types (recycled, cloned, etc.), track and trace IoT devices, and verify the overall system authenticity. Central to CDTA is an RFID tag employed as storage and a channel to read the information from different types of chips on the printed circuit board (PCB) in both power-on and power-off scenarios. CDTA sensor data can also be sent to the remote server for authentication via an encrypted Ethernet channel when the IoT device is deployed in the field. A novel board ID generator is implemented by combining outputs of physical unclonable functions (PUFs) embedded in the RFID tag and different chips on the PCB. A light-weight RFID protocol is proposed to enable mutual authentication between RFID readers and tags. We also implement a secure interchip communication on the PCB. Simulations and experimental results using Spartan 3E FPGAs demonstrate the effectiveness of this system. The efficiency of the radio-frequency (RF) communication has also been verified via a PCB prototype with a printed slot antenna.
The evolution of cloud-computing imposes many challenges on performance testing and requires not only a different approach and methodology of performance evaluation and analysis, but also specialized tools and frameworks to support such work. In traditional performance testing, typically a single workload was run against a static test configuration. The main metrics derived from such experiments included throughput, response times, and system utilization at steady-state. While this may have been sufficient in the past, where in many cases a single application was run on dedicated hardware, this approach is no longer suitable for cloud-based deployments. Whether private or public cloud, such environments typically host a variety of applications on distributed shared hardware resources, simultaneously accessed by a large number of tenants running heterogeneous workloads. The number of tenants as well as their activity and resource needs dynamically change over time, and the cloud infrastructure reacts to this by reallocating existing or provisioning new resources. Besides metrics such as the number of tenants and overall resource utilization, performance testing in the cloud must be able to answer many more questions: How is the quality of service of a tenant impacted by the constantly changing activity of other tenants? How long does it take the cloud infrastructure to react to changes in demand, and what is the effect on tenants while it does so? How well are service level agreements met? What is the resource consumption of individual tenants? How can global performance metrics on application- and system-level in a distributed system be correlated to an individual tenant's perceived performance? In this paper we present CloudPerf, a performance test framework specifically designed for distributed and dynamic multi-tenant environments, capable of answering all of the above questions, and more. CloudPerf consists of a distributed harness, a protocol-independent load generator and workload modeling framework, an extensible statistics framework with live-monitoring and post-analysis tools, interfaces for cloud deployment operations, and a rich set of both low-level as well as high-level workloads from different domains.
Mobile attack approaches can be categorized as Application Based Attacks and Frequency Based Attacks. Application based attacks are reviewed extensively in the literature. However, frequency based attacks to mobile phones are not experimented in detail. In this work, we have experimentally succeeded to attack an Android smartphone using a simple software based radio circuit. We have developed a software “Primary Mobile Hack Builder” to control Android operated cellphone as a distance. The SMS information and pictures in the cellphone can be obtained using this device. On the other hand, after launching a software into targeting cellphone, the camera of the cellphone can be controlled for taking pictures and downloading them into our computers. It was also possible to eavesdropping the conversation.
Factoring is an important financial instrument for SMEs to solve liquidity problems, where the invoice is cashed to avoid late buyer payments. Unfortunately, this business model is risky as it relies on human interaction and involved actors (factors in particular) suffer from information asymmetry. One of the risks involved is 'double-financing': the event that an SME extracts funds from multiple factors. To reduce this asymmetry and increase the scalability of this important instrument, we propose a framework, DecReg, based on blockchain technology. We provide the protocols designed for this framework and present performance analysis. This framework will be deployed in practice as of February 2017 in the Netherlands.
Modern weapons systems have depended on microelectronics since the inception of integrated circuits over fifty years ago. Today, most electronics contain programmable components of ever increasing complexity. At the same time, the Department of Defense (DoD) has become a far less influential buyer in a vast, globalized supplier base. Consequently, assuring that defense electronics are free from vulnerabilities is a daunting task.
Because system configurations typically remain unchanged for very long periods of time, compromising microelectronics can create persistent vulnerabilities. Exploitation of vulnerabilities in microelectronics and embedded software can cause mission failure in modern weapons systems. Such exploitations are especially pernicious because they can be difficult to distinguish from electrical or mechanical failures and because effects can run the gamut from system degradation to system failure to system subversion.
Cyber supply chain vulnerabilities may be inserted or discovered throughout the lifecycle of a system. Of particular concern are the weapons the nation depends upon today; almost all were developed, acquired, and fielded without formal protection plans.