Visible to the public BiblioConflict Detection Enabled

Filters: Author is Moritz Held  [Clear All Filters]
2021-08-13
Moritz Held, Jelmer Borst, Anirudh Unni, Jochem Rieger.  2021.  Utilizing ACT-R to investigate interactions between working memory and visuospatial attention while driving.
(POSTER PRESENTATION) Utilizing ACT-R to investigate interactions between working memory and visuospatial attention while driving at 2021 ICCM - International Conference on Cognitive Modeling, July 08, 2021
Moritz Held, Jelmer Borst, Anirudh Unni, Jochem Rieger.  2021.  Utilizing ACT-R to investigate interactions between working memory and visuospatial attention while driving. Proceedings of the Annual Meeting of the Cognitive Science Society. 43(1)
In an effort towards predicting mental workload while driving, previous research found interactions between working memory load and visuospatial demands, which complicates the accurate prediction of momentary mental workload. To investigate this interaction, the cognitive concepts working memory load and visuospatial attention were integrated into a cognitive driving model using the cognitive architecture ACT-R. The model was developed to safely drive on a multi-lane highway with ongoing traffic while performing a secondary n-back task using speed signs. To manipulate visuospatial demands, the model must drive through a construction site with reduced lane-width in certain blocks of the experiment. Furthermore, it is able to handle complex driving situations such as overtaking traffic while adjusting the speed according to the n-back task. The behavioral results show a negative effect on driving performance with increasing task difficulty of the secondary task. Additionally, the model indicates an interaction at a common, task-unspecific level.
2021-08-12
Klaus Bengler, Bianca Biebl, Werner Damm, Martin Fränzle, Willem Hagemann, Moritz Held, Klas Ihme, Severin Kacianka, Sebastian Lehnhoff, Andreas Luedtke et al..  2021.  A Metamodel of Human Cyber Physical Systems. Working Document of the PIRE Project on Assuring Individual, Social, and Cultural Embeddedness of Autonomous Cyber-Physical Systems (ISCE-ACPS). :41.