Biblio
With the rapid growth of Linux-based IoT devices such as network cameras and routers, the security becomes a concern and many attacks utilize vulnerabilities to compromise the devices. It is crucial for researchers to find vulnerabilities in IoT systems before attackers. Fuzzing is an effective vulnerability discovery technique for traditional desktop programs, but could not be directly applied to Linux-based IoT programs due to the special execution environment requirement. In our paper, we propose an efficient greybox fuzzing scheme for Linux-based IoT programs which consist of two phases: binary static analysis and IoT program greybox fuzzing. The binary static analysis is to help generate useful inputs for efficient fuzzing. The IoT program greybox fuzzing is to reinforce the IoT firmware kernel greybox fuzzer to support IoT programs. We implement a prototype system and the evaluation results indicate that our system could automatically find vulnerabilities in real-world Linux-based IoT programs efficiently.
Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.
Supervisory Control and Data Acquisition (SCADA)networks are widely deployed in modern industrial control systems (ICSs)such as energy-delivery systems. As an increasing number of field devices and computing nodes get interconnected, network-based cyber attacks have become major cyber threats to ICS network infrastructure. Field devices and computing nodes in ICSs are subjected to both conventional network attacks and specialized attacks purposely crafted for SCADA network protocols. In this paper, we propose a deep-learning-based network intrusion detection system for SCADA networks to protect ICSs from both conventional and SCADA specific network-based attacks. Instead of relying on hand-crafted features for individual network packets or flows, our proposed approach employs a convolutional neural network (CNN)to characterize salient temporal patterns of SCADA traffic and identify time windows where network attacks are present. In addition, we design a re-training scheme to handle previously unseen network attack instances, enabling SCADA system operators to extend our neural network models with site-specific network attack traces. Our results using realistic SCADA traffic data sets show that the proposed deep-learning-based approach is well-suited for network intrusion detection in SCADA systems, achieving high detection accuracy and providing the capability to handle newly emerged threats.
Supply chain management (SCM) is fundamental for gaining financial, environmental and social benefits in the supply chain industry. However, traditional SCM mechanisms usually suffer from a wide scope of issues such as lack of information sharing, long delays for data retrieval, and unreliability in product tracing. Recent advances in blockchain technology show great potential to tackle these issues due to its salient features including immutability, transparency, and decentralization. Although there are some proof-of-concept studies and surveys on blockchain-based SCM from the perspective of logistics, the underlying technical challenges are not clearly identified. In this paper, we provide a comprehensive analysis of potential opportunities, new requirements, and principles of designing blockchain-based SCM systems. We summarize and discuss four crucial technical challenges in terms of scalability, throughput, access control, data retrieval and review the promising solutions. Finally, a case study of designing blockchain-based food traceability system is reported to provide more insights on how to tackle these technical challenges in practice.
The Named Data Network (NDN) is a promising network paradigm for content distribution based on caching. However, it may put consumer privacy at risk, as the adversary may identify the content, the name and the signature (namely a certificate) through side-channel timing responses from the cache of the routers. The adversary may identify the content name and the consumer node by distinguishing between cached and un- cached contents. In order to mitigate the timing attack, effective countermeasure methods have been proposed by other authors, such as random caching, random freshness, and probabilistic caching. In this work, we have implemented a timing attack scenario to evaluate the efficiency of these countermeasures and to demonstrate how the adversary can be detected. For this goal, a brute force timing attack scenario based on a real topology was developed, which is the first brute force attack model applied in NDN. Results show that the adversary nodes can be effectively distinguished from other legitimate consumers during the attack period. It is also proposed a multi-level mechanism to detect an adversary node. Through this approach, the content distribution performance can be mitigated against the attack.
Signature-based Intrusion Detection Systems (IDS) are a key component in the cybersecurity defense strategy for any network being monitored. In order to improve the efficiency of the intrusion detection system and the corresponding mitigation action, it is important to address the problem of false alarms. In this paper, we present a comparative analysis of two approaches that consider the false alarm minimization and alarm correlation techniques. The output of this analysis provides us the elements to propose a parallelizable strategy designed to achieve better results in terms of precision, recall and alarm load reduction in the prioritization of alarms. We use Prelude SIEM as the event normalizer in order to process security events from heterogeneous sensors and to correlate them. The alarms are verified using the dynamic network context information collected from the vulnerability analysis, and they are prioritized using the HP Arsight priority formula. The results show an important reduction in the volume of alerts, together with a high precision in the identification of false alarms.
Nowadays, communication networks have a high relevance in any field. Because of this, it is necessary to maintain them working properly and with an adequate security level. In many fields, and in anomaly detection in communication networks in particular, it results really convenient the use of early detection methods. Therefore, adequate metrics must be defined to allow the correct evaluation of methods applied in relation to time delay in the detection. In this thesis the definition of time-aware metrics for early detection anomaly techniques evaluation.
The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.
We recently see a real digital revolution where all companies prefer to use cloud computing because of its capability to offer a simplest way to deploy the needed services. However, this digital transformation has generated different security challenges as the privacy vulnerability against cyber-attacks. In this work we will present a new architecture of a hybrid Intrusion detection System, IDS for virtual private clouds, this architecture combines both network-based and host-based intrusion detection system to overcome the limitation of each other, in case the intruder bypassed the Network-based IDS and gained access to a host, in intend to enhance security in private cloud environments. We propose to use a non-traditional mechanism in the conception of the IDS (the detection engine). Machine learning, ML algorithms will can be used to build the IDS in both parts, to detect malicious traffic in the Network-based part as an additional layer for network security, and also detect anomalies in the Host-based part to provide more privacy and confidentiality in the virtual machine. It's not in our scope to train an Artificial Neural Network ”ANN”, but just to propose a new scheme for IDS based ANN, In our future work we will present all the details related to the architecture and parameters of the ANN, as well as the results of some real experiments.