Visible to the public Biblio

Found 758 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2018-01-16
Guri, M., Mirsky, Y., Elovici, Y..  2017.  9-1-1 DDoS: Attacks, Analysis and Mitigation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :218–232.

The 911 emergency service belongs to one of the 16 critical infrastructure sectors in the United States. Distributed denial of service (DDoS) attacks launched from a mobile phone botnet pose a significant threat to the availability of this vital service. In this paper we show how attackers can exploit the cellular network protocols in order to launch an anonymized DDoS attack on 911. The current FCC regulations require that all emergency calls be immediately routed regardless of the caller's identifiers (e.g., IMSI and IMEI). A rootkit placed within the baseband firmware of a mobile phone can mask and randomize all cellular identifiers, causing the device to have no genuine identification within the cellular network. Such anonymized phones can issue repeated emergency calls that cannot be blocked by the network or the emergency call centers, technically or legally. We explore the 911 infrastructure and discuss why it is susceptible to this kind of attack. We then implement different forms of the attack and test our implementation on a small cellular network. Finally, we simulate and analyze anonymous attacks on a model of current 911 infrastructure in order to measure the severity of their impact. We found that with less than 6K bots (or \$100K hardware), attackers can block emergency services in an entire state (e.g., North Carolina) for days. We believe that this paper will assist the respective organizations, lawmakers, and security professionals in understanding the scope of this issue in order to prevent possible 911-DDoS attacks in the future.

Bhaya, W., EbadyManaa, M..  2017.  DDoS attack detection approach using an efficient cluster analysis in large data scale. 2017 Annual Conference on New Trends in Information Communications Technology Applications (NTICT). :168–173.

Distributed Denial of Service (DDoS) attack is a congestion-based attack that makes both the network and host-based resources unavailable for legitimate users, sending flooding attack packets to the victim's resources. The non-existence of predefined rules to correctly identify the genuine network flow made the task of DDoS attack detection very difficult. In this paper, a combination of unsupervised data mining techniques as intrusion detection system are introduced. The entropy concept in term of windowing the incoming packets is applied with data mining technique using Clustering Using Representative (CURE) as cluster analysis to detect the DDoS attack in network flow. The data is mainly collected from DARPA2000, CAIDA2007 and CAIDA2008 datasets. The proposed approach has been evaluated and compared with several existing approaches in terms of accuracy, false alarm rate, detection rate, F. measure and Phi coefficient. Results indicates the superiority of the proposed approach with four out five detected phases, more than 99% accuracy rate 96.29% detection rate, around 0% false alarm rate 97.98% F-measure, and 97.98% Phi coefficient.

Arasu, Arvind, Eguro, Ken, Kaushik, Raghav, Kossmann, Donald, Meng, Pingfan, Pandey, Vineet, Ramamurthy, Ravi.  2017.  Concerto: A High Concurrency Key-Value Store with Integrity. Proceedings of the 2017 ACM International Conference on Management of Data. :251–266.

Verifying the integrity of outsourced data is a classic, well-studied problem. However current techniques have fundamental performance and concurrency limitations for update-heavy workloads. In this paper, we investigate the potential advantages of deferred and batched verification rather than the per-operation verification used in prior work. We present Concerto, a comprehensive key-value store designed around this idea. Using Concerto, we argue that deferred verification preserves the utility of online verification and improves concurrency resulting in orders-of-magnitude performance improvement. On standard benchmarks, the performance of Concerto is within a factor of two when compared to state-of-the-art key-value stores without integrity.

Eltayesh, Faryed, Bentahar, Jamal.  2017.  Verifiable Outsourced Database in the Cloud Using Game Theory. Proceedings of the Symposium on Applied Computing. :370–377.

In the verifiable database (VDB) model, a computationally weak client (database owner) delegates his database management to a database service provider on the cloud, which is considered untrusted third party, while users can query the data and verify the integrity of query results. Since the process can be computationally costly and has a limited support for sophisticated query types such as aggregated queries, we propose in this paper a framework that helps bridge the gap between security and practicality trade-offs. The proposed framework remodels the verifiable database problem using Stackelberg security game. In the new model, the database owner creates and uploads to the database service provider the database and its authentication structure (AS). Next, the game is played between the defender (verifier), who is a trusted party to the database owner and runs scheduled randomized verifications using Stackelberg mixed strategy, and the database service provider. The idea is to randomize the verification schedule in an optimized way that grants the optimal payoff for the verifier while making it extremely hard for the database service provider or any attacker to figure out which part of the database is being verified next. We have implemented and compared the proposed model performance with a uniform randomization model. Simulation results show that the proposed model outperforms the uniform randomization model. Furthermore, we have evaluated the efficiency of the proposed model against different cost metrics.

2018-01-10
Forutan, V., Elschner, R., Schmidt-Langhorst, C., Schubert, C., Fischer, R. F. H..  2017.  Towards Information-Theoretic Security in Optical Networks. Photonic Networks; 18. ITG-Symposium. :1–7.

In fiber-optic communication networks, research on data security at lower layers of the protocol stack and in particular at the physical layer by means of information-theoretic concepts is only in the beginning. Nevertheless, it has recently attracted quite some attention as it holds the promise of providing unconditional, perfect security without the need for secret key exchanges. In this paper, we analyze some important constraints that such concepts put on a potential implementation of physical-layer security. We review the fundamentals of physical-layer security on the basis of the commonly used AWGN wiretap channel model. For such channel model we summarize the security metrics which are typically used in information theory and in particular recall that, for secure communication over the AWGN channel, the legitimate receiver needs an SNR advantage over the eavesdropper. Next, we relate the information theoretic metrics to physically measurable quantities in optical communications engineering, namely optical signal-to-noise ratio (OSNR) and bit-error ratio (BER), and translate the information-theoretic wiretap scenario to a simple real-world point-to-point optical transmission link in which part of the light is wiretapped using a bend coupler. We investigate the achievable OSNR advantage under realistic assumptions for fiber loss, tap ratio, and noise budget and find that secure transmission is limited to a distance of a few tens of kilometers in this case. The maximum secure transmission distance decreases with an increasing tap ratio chosen by the eavesdropper. This can be only counteracted by monitoring the link loss towards the legitimate receiver which would force the eavesdropper to choose small tap ratios in order to remain undetected. In an outlook towards further research directions we identify information-theoretic approaches which could potentially allow to realize physical-layer security in more generalized scenarios or over longer distances.

2017-12-28
Esteves-Verissimo, P., Völp, M., Decouchant, J., Rahli, V., Rocha, F..  2017.  Meeting the Challenges of Critical and Extreme Dependability and Security. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :92–97.

The world is becoming an immense critical information infrastructure, with the fast and increasing entanglement of utilities, telecommunications, Internet, cloud, and the emerging IoT tissue. This may create enormous opportunities, but also brings about similarly extreme security and dependability risks. We predict an increase in very sophisticated targeted attacks, or advanced persistent threats (APT), and claim that this calls for expanding the frontier of security and dependability methods and techniques used in our current CII. Extreme threats require extreme defenses: we propose resilience as a unifying paradigm to endow systems with the capability of dynamically and automatically handling extreme adversary power, and sustaining perpetual and unattended operation. In this position paper, we present this vision and describe our methodology, as well as the assurance arguments we make for the ultra-resilient components and protocols they enable, illustrated with case studies in progress.

Henretty, T., Baskaran, M., Ezick, J., Bruns-Smith, D., Simon, T. A..  2017.  A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

El-Khamy, S. E., Korany, N. O., El-Sherif, M. H..  2017.  Correlation based highly secure image hiding in audio signals using wavelet decomposition and chaotic maps hopping for 5G multimedia communications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–3.

Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.

2017-12-27
Li, L., Abd-El-Atty, B., El-Latif, A. A. A., Ghoneim, A..  2017.  Quantum color image encryption based on multiple discrete chaotic systems. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :555–559.

In this paper, a novel quantum encryption algorithm for color image is proposed based on multiple discrete chaotic systems. The proposed quantum image encryption algorithm utilize the quantum controlled-NOT image generated by chaotic logistic map, asymmetric tent map and logistic Chebyshev map to control the XOR operation in the encryption process. Experiment results and analysis show that the proposed algorithm has high efficiency and security against differential and statistical attacks.

Hassene, S., Eddine, M. N..  2016.  A new hybrid encryption technique permuting text and image based on hyperchaotic system. 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). :63–68.

This paper proposes a new hybrid technique for combined encryption text and image based on hyperchaos system. Since antiquity, man has continued looking for ways to send messages to his correspondents in order to communicate with them safely. It needed, through successive epochs, both physical and intellectual efforts in order to find an effective and appropriate communication technique. On another note, there is a behavior between the rigid regularity and randomness. This behavior is called chaos. In fact, it is a new field of investigation that is opened along with a new understanding of the frequently misunderstood long effects. The chaotic cryptography is thus born by inclusion of chaos in encryption algorithms. This article is in this particular context. Its objective is to create and implement an encryption algorithm based on a hyperchaotic system. This algorithm is composed of four methods: two for encrypting images and two for encrypting texts. The user chose the type of the input of the encryption (image or text) and as well as of the output. This new algorithm is considered a renovation in the science of cryptology, with the hybrid methods. This research opened a new features.

Kharel, R., Raza, U., Ijaz, M., Ekpo, S., Busawon, K..  2016.  Chaotic secure digital communication scheme using auxiliary systems. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.

In this paper, we present a new secure message transmission scheme using hyperchaotic discrete primary and auxiliary chaotic systems. The novelty lies on the use of auxiliary chaotic systems for the encryption purposes. We have used the modified Henon hyperchaotic discrete-time system. The use of the auxiliary system allows generating the same keystream in the transmitter and receiver side and the initial conditions in the auxiliary systems combined with other transmitter parameters suffice the role of the key. The use of auxiliary systems will mean that the information of keystream used in the encryption function will not be present on the transmitted signal available to the intruders, hence the reconstructing of the keystream will not be possible. The encrypted message is added on to the dynamics of the transmitter using inclusion technique and the dynamical left inversion technique is employed to retrieve the unknown message. The simulation results confirm the robustness of the method used and some comments are made about the key space from the cryptographic viewpoint.

2017-12-20
Raiola, P., Erb, D., Reddy, S. M., Becker, B..  2017.  Accurate Diagnosis of Interconnect Open Defects Based on the Robust Enhanced Aggressor Victim Model. 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID). :135–140.

Interconnect opens are known to be one of the predominant defects in nanoscale technologies. Automatic test pattern generation for open faults is challenging, because of their rather unstable behavior and the numerous electrical parameters which need to be considered. Thus, most approaches try to avoid accurate modeling of all constraints like the influence of the aggressors on the open net and use simplified fault models in order to detect as many faults as possible or make assumptions which decrease both complexity and accuracy. Yet, this leads to the problem that not only generated tests may be invalidated but also the localization of a specific fault may fail - in case such a model is used as basis for diagnosis. Furthermore, most of the models do not consider the problem of oscillating behavior, caused by feedback introduced by coupling capacitances, which occurs in almost all designs. In [1], the Robust Enhanced Aggressor Victim Model (REAV) and in [2] an extension to address the problem of oscillating behavior were introduced. The resulting model does not only consider the influence of all aggressors accurately but also guarantees robustness against oscillating behavior as well as process variations affecting the thresholds of gates driven by an open interconnect. In this work we present the first diagnostic classification algorithm for this model. This algorithm considers all constraints enforced by the REAV model accurately - and hence handles unknown values as well as oscillating behavior. In addition, it allows to distinguish faults at the same interconnect and thus reducing the area that has to be considered for physical failure analysis. Experimental results show the high efficiency of the new method handling circuits with up to 500,000 non-equivalent faults and considerably increasing the diagnostic resolution.

Althamary, I. A., El-Alfy, E. S. M..  2017.  A more secure scheme for CAPTCHA-based authentication in cloud environment. 2017 8th International Conference on Information Technology (ICIT). :405–411.

Cloud computing is a remarkable model for permitting on-demand network access to an elastic collection of configurable adaptive resources and features including storage, software, infrastructure, and platform. However, there are major concerns about security-related issues. A very critical security function is user authentication using passwords. Although many flaws have been discovered in password-based authentication, it remains the most convenient approach that people continue to utilize. Several schemes have been proposed to strengthen its effectiveness such as salted hashes, one-time password (OTP), single-sign-on (SSO) and multi-factor authentication (MFA). This study proposes a new authentication mechanism by combining user's password and modified characters of CAPTCHA to generate a passkey. The modification of the CAPTCHA depends on a secret agreed upon between the cloud provider and the user to employ different characters for some characters in the CAPTCHA. This scheme prevents various attacks including short-password attack, dictionary attack, keylogger, phishing, and social engineering. Moreover, it can resolve the issue of password guessing and the use of a single password for different cloud providers.

Alqahtani, S. S., Eghan, E. E., Rilling, J..  2017.  Recovering Semantic Traceability Links between APIs and Security Vulnerabilities: An Ontological Modeling Approach. 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). :80–91.

Over the last decade, a globalization of the software industry took place, which facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the software engineering community, with not only components but also their problems and vulnerabilities being now shared. For example, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing these vulnerabilities at a global scale becomes an inherently difficult task since many of the existing resources required for such analysis still rely on proprietary knowledge representation. In this research, we introduce an ontology-based knowledge modeling approach that can eliminate such information silos. More specifically, we focus on linking security knowledge with other software knowledge to improve traceability and trust in software products (APIs). Our approach takes advantage of the Semantic Web and its reasoning services, to trace and assess the impact of security vulnerabilities across project boundaries. We present a case study, to illustrate the applicability and flexibility of our ontological modeling approach by tracing vulnerabilities across project and resource boundaries.

Endo, M., Ohtsuki, T., Fujii, T., Takyu, O..  2017.  Secure Channel Selection Using Multi-Armed Bandit Algorithm in Cognitive Radio Network. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.

Recently, some papers that apply a multi-armed bandit algorithm for channel selection in a cognitive radio system have been reported. In those papers, channel selection based on Upper Confidence Bound (UCB) algorithm has been proposed. However, in those selection, secondary users are not allowed to transmit data over same channels at the same time. Moreover, they do not take security of wireless communication into account. In this paper, we propose secure channel selection methods based on UCB algorithm, taking secrecy capacity into account. In our model, secondary users can share same channel by using transmit time control or transmit power control. Our proposed methods lead to be secure against an eavesdropper compared to conventional channel selections based on only estimated channel availability. By computer simulation, we evaluate average system secrecy capacity. As a result, we show that our proposed channel selections improve average system secrecy capacity compared to conventional channel selection.

Salameh, H. B., Almajali, S., Ayyash, M., Elgala, H..  2017.  Security-aware channel assignment in IoT-based cognitive radio networks for time-critical applications. 2017 Fourth International Conference on Software Defined Systems (SDS). :43–47.

Cognitive radio networks (CRNs) have a great potential in supporting time-critical data delivery among the Internet of Things (IoT) devices and for emerging applications such as smart cities. However, the unique characteristics of different technologies and shared radio operating environment can significantly impact network availability. Hence, in this paper, we study the channel assignment problem in time-critical IoT-based CRNs under proactive jamming attacks. Specifically, we propose a probabilistic spectrum assignment algorithm that aims at minimizing the packet invalidity ratio of each cognitive radio (CR) transmission subject to delay constrains. We exploit the statistical information of licensed users' activities, fading conditions, and jamming attacks over idle channels. Simulation results indicate that network performance can be significantly improved by using a security- availability- and quality-aware channel assignment that provides communicating CR pair with the most secured channel of the lowest invalidity ratio.

Ejike, C., Kouvatsos, D..  2017.  Combined sensing, performance and security trade-offs in cognitive radio networks. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–4.

Cognitive radio networks (CRNs) enable secondary users (SU) to make use of licensed spectrum without interfering with the signal generated by primary users (PUs). To avoid such interference, the SU is required to sense the medium for a period of time and eventually use it only if the band is perceived to be idle. In this context, the encryption process is carried out for the SU requests prior to their transmission whilst the strength of the security in CRNs is directly proportional to the length of the encryption key. If a request of a PU on arrival finds an SU request being either encrypted or transmitted, then the SU is preempted from service. However, excessive sensing time for the detection of free spectrum by SUs as well as extended periods of the CRN being at an insecure state have an adverse impact on network performance. To this end, a generalized stochastic Petri net (GSPN) is proposed in order to investigate sensing vs. security vs. performance trade-offs, leading to an efficient use of the spectrum band. Typical numerical simulation experiments are carried out, based on the application of the Mobius Petri Net Package and associated interpretations are made.

2017-12-12
Kogos, K. G., Seliverstova, E. I., Epishkina, A. V..  2017.  Review of covert channels over HTTP: Communication and countermeasures. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :459–462.

Many innovations in the field of cryptography have been made in recent decades, ensuring the confidentiality of the message's content. However, sometimes it's not enough to secure the message, and communicating parties need to hide the fact of the presence of any communication. This problem is solved by covert channels. A huge number of ideas and implementations of different types of covert channels was proposed ever since the covert channels were mentioned for the first time. The spread of the Internet and networking technologies was the reason for the use of network protocols for the invention of new covert communication methods and has led to the emergence of a new class of threats related to the data leakage via network covert channels. In recent years, web applications, such as web browsers, email clients and web messengers have become indispensable elements in business and everyday life. That's why ubiquitous HTTP messages are so useful as a covert information containers. The use of HTTP for the implementation of covert channels may increase the capacity of covert channels due to HTTP's flexibility and wide distribution as well. We propose a detailed analysis of all known HTTP covert channels and techniques of their detection and capacity limitation.

Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., Gamboa, C..  2017.  A scientific data provenance harvester for distributed applications. 2017 New York Scientific Data Summit (NYSDS). :1–9.

Data provenance provides a way for scientists to observe how experimental data originates, conveys process history, and explains influential factors such as experimental rationale and associated environmental factors from system metrics measured at runtime. The US Department of Energy Office of Science Integrated end-to-end Performance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) project has developed a provenance harvester that is capable of collecting observations from file based evidence typically produced by distributed applications. To achieve this, file based evidence is extracted and transformed into an intermediate data format inspired in part by W3C CSV on the Web recommendations, called the Harvester Provenance Application Interface (HAPI) syntax. This syntax provides a general means to pre-stage provenance into messages that are both human readable and capable of being written to a provenance store, Provenance Environment (ProvEn). HAPI is being applied to harvest provenance from climate ensemble runs for Accelerated Climate Modeling for Energy (ACME) project funded under the U.S. Department of Energy's Office of Biological and Environmental Research (BER) Earth System Modeling (ESM) program. ACME informally provides provenance in a native form through configuration files, directory structures, and log files that contain success/failure indicators, code traces, and performance measurements. Because of its generic format, HAPI is also being applied to harvest tabular job management provenance from Belle II DIRAC scheduler relational database tables as well as other scientific applications that log provenance related information.

Almehmadi, A., El-khatib, K..  2017.  On the Possibility of Insider Threat Prevention Using Intent-Based Access Control (IBAC). IEEE Systems Journal. 11:373–384.

Existing access control mechanisms are based on the concept of identity enrolment and recognition and assume that recognized identity is a synonym to ethical actions, yet statistics over the years show that the most severe security breaches are the results of trusted, identified, and legitimate users who turned into malicious insiders. Insider threat damages vary from intellectual property loss and fraud to information technology sabotage. As insider threat incidents evolve, there exist demands for a nonidentity-based authentication measure that rejects access to authorized individuals who have mal-intents of access. In this paper, we study the possibility of using the user's intention as an access control measure using the involuntary electroencephalogram reactions toward visual stimuli. We propose intent-based access control (IBAC) that detects the intentions of access based on the existence of knowledge about an intention. IBAC takes advantage of the robustness of the concealed information test to assess access risk. We use the intent and intent motivation level to compute the access risk. Based on the calculated risk and risk accepted threshold, the system makes the decision whether to grant or deny access requests. We assessed the model using experiments on 30 participants that proved the robustness of the proposed solution.

2017-12-04
Neubauer, A., Fritsch, K. M., Elsässer, A..  2016.  Optimized electromagnetic and manufacturing design for a BLDC-motor substituting rare earth magnets. 2016 6th International Electric Drives Production Conference (EDPC). :207–210.

Substituting neodymium with ferrite based magnets comes with the penalty of significant reduced magnetic field energy. Several possibilities to compensate for the negative effects of a lower remanence and coercivity provided by ferrite magnets are presented and finally combined into the development of a new kind of BLDC-machine design. The new design is compared to a conventional machine on the application example of an electric 800 W/48 V automotive coolant pump.

2017-11-20
Regainia, L., Salva, S., Ecuhcurs, C..  2016.  A classification methodology for security patterns to help fix software weaknesses. 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). :1–8.

Security patterns are generic solutions that can be applied since early stages of software life to overcome recurrent security weaknesses. Their generic nature and growing number make their choice difficult, even for experts in system design. To help them on the pattern choice, this paper proposes a semi-automatic methodology of classification and the classification itself, which exposes relationships among software weaknesses, security principles and security patterns. It expresses which patterns remove a given weakness with respect to the security principles that have to be addressed to fix the weakness. The methodology is based on seven steps, which anatomize patterns and weaknesses into set of more precise sub-properties that are associated through a hierarchical organization of security principles. These steps provide the detailed justifications of the resulting classification and allow its upgrade. Without loss of generality, this classification has been established for Web applications and covers 185 software weaknesses, 26 security patterns and 66 security principles. Research supported by the industrial chair on Digital Confidence (http://confiance-numerique.clermont-universite.fr/index-en.html).

2017-11-03
Kolodenker, Eugene, Koch, William, Stringhini, Gianluca, Egele, Manuel.  2017.  PayBreak: Defense Against Cryptographic Ransomware. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :599–611.

Similar to criminals in the physical world, cyber-criminals use a variety of illegal and immoral means to achieve monetary gains. Recently, malware known as ransomware started to leverage strong cryptographic primitives to hold victims' computer files "hostage" until a ransom is paid. Victims, with no way to defend themselves, are often advised to simply pay. Existing defenses against ransomware rely on ad-hoc mitigations that target the incorrect use of cryptography rather than generic live protection. To fill this gap in the defender's arsenal, we describe the approach, prototype implementation, and evaluation of a novel, automated, and most importantly proactive defense mechanism against ransomware. Our prototype, called PayBreak, effectively combats ransomware, and keeps victims' files safe. PayBreak is based on the insight that secure file encryption relies on hybrid encryption where symmetric session keys are used on the victim computer. PayBreak observes the use of these keys, holds them in escrow, and thus, can decrypt files that would otherwise only be recoverable by paying the ransom. Our prototype leverages low overhead dynamic hooking techniques and asymmetric encryption to realize the key escrow mechanism which allows victims to restore the files encrypted by ransomware. We evaluated PayBreak for its effectiveness against twenty hugely successful families of real-world ransomware, and demonstrate that our system can restore all files that are encrypted by samples from twelve of these families, including the infamous CryptoLocker, and more recent threats such as Locky and SamSam. Finally, PayBreak performs its protection task at negligible performance overhead for common office workloads and is thus ideally suited as a proactive online protection system.

2017-11-01
Elsobky, Alaa Mahmoud, Farag, Abdelalim Kamal, Keshk, Arabi.  2016.  Efficient Implementation of McEliece Cryptosystem on Graphic Processing Unit. Proceedings of the 10th International Conference on Informatics and Systems. :247–253.
McEliece is a public-key cryptosystem based on error correcting codes. It has the ability to resist quantum-computer attacks which can break different modern public key cryptosystems such as RSA. Further more, it's encryption and decryption are very fast and have good characteristics for data parallel processing. Nowadays, modern graphic processing units (GPUs) are available in almost all hardware platforms. GPUs can comprise many compute cores which can process a huge data in parallel. In this paper, different implementations of McEliece cryptosystem are explored on NVIDIA GTX780 GPU using OpenCL framework. Our implementation results show that GPU is 331x faster than CPU when apply local memory with vector data-type to encrypt 216 messages.
2017-10-27
Agrafiotis, Ioannis, Erola, Arnau, Goldsmith, Michael, Creese, Sadie.  2016.  A Tripwire Grammar for Insider Threat Detection. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :105–108.
The threat from insiders is an ever-growing concern for organisations, and in recent years the harm that insiders pose has been widely demonstrated. This paper describes our recent work into how we might support insider threat detection when actions are taken which can be immediately determined as of concern because they fall into one of two categories: they violate a policy which is specifically crafted to describe behaviours that are highly likely to be of concern if they are exhibited, or they exhibit behaviours which follow a pattern of a known insider threat attack. In particular, we view these concerning actions as something that we can design and implement tripwires within a system to detect. We then orchestrate these tripwires in conjunction with an anomaly detection system and present an approach to formalising tripwires of both categories. Our intention being that by having a single framework for describing them, alongside a library of existing tripwires in use, we can provide the community of practitioners and researchers with the basis to document and evolve this common understanding of tripwires.