Biblio
This paper contributes a systematic research approach as well as findings of an empirical study conducted to investigate the effect of virtual agents on task performance and player experience in digital games. As virtual agents are supposed to evoke social effects similar to real humans under certain conditions, the basic social phenomenon social facilitation is examined in a testbed game that was specifically developed to enable systematical variation of single impact factors of social facilitation. Independent variables were the presence of a virtual agent (present vs. not present) and the output device (ordinary monitor vs. head-mounted display). Results indicate social inhibition effects, but only for players using a head-mounted display. Additional potential impact factors and future research directions are discussed.
Human mobility is one of the key topics to be considered in the networks of the future, both by industrial and research communities that are already focused on multidisciplinary applications and user-centric systems. If the rapid proliferation of networks and high-tech miniature sensors makes this reality possible, the ever-growing complexity of the metrics and parameters governing such systems raises serious issues in terms of privacy, security and computing capability. In this demonstration, we show a new system, able to estimate a user's mobility profile based on anonymized and lightweight smartphone data. In particular, this system is composed of (1) a web analytics platform, able to analyze multimodal sensing traces and improve our understanding of complex mobility patterns, and (2) a smartphone application, able to show a user's profile generated locally in the form of a spider graph. In particular, this application uses anonymized and privacy-friendly data and methods, obtained thanks to the combination of Wi-Fi traces, activity detection and graph theory, made available independent of any personal information. A video showing the different interfaces to be presented is available online.
Remote attestation is a crucial security service particularly relevant to increasingly popular IoT (and other embedded) devices. It allows a trusted party (verifier) to learn the state of a remote, and potentially malware-infected, device (prover). Most existing approaches are static in nature and only check whether benign software is initially loaded on the prover. However, they are vulnerable to runtime attacks that hijack the application's control or data flow, e.g., via return-oriented programming or data-oriented exploits. As a concrete step towards more comprehensive runtime remote attestation, we present the design and implementation of Control-FLow ATtestation (C-FLAT) that enables remote attestation of an application's control-flow path, without requiring the source code. We describe a full prototype implementation of C-FLAT on Raspberry Pi using its ARM TrustZone hardware security extensions. We evaluate C-FLAT's performance using a real-world embedded (cyber-physical) application, and demonstrate its efficacy against control-flow hijacking attacks.
The secure two-party computation (S2PC) protocols SHADE and GSHADE have been introduced by Bringer et al. in the last two years. The protocol GSHADE permits to compute different distances (Hamming, Euclidean, Mahalanobis) quite efficiently and is one of the most efficient compared to other S2PC methods. Thus this protocol can be used to efficiently compute one-to-many identification for several biometrics data (iris, face, fingerprint). In this paper, we introduce two extensions of GSHADE. The first one enables us to evaluate new multiplicative functions. This way, we show how to apply GSHADE to a classical machine learning algorithm. The second one is a new proposal to secure GSHADE against malicious adversaries following the recent dual execution and cut-and-choose strategies. The additional cost is very small. By preserving the GSHADE's structure, our extensions are very efficient compared to other S2PC methods.
We study coding schemes for multiparty interactive communication over synchronous networks that suffer from stochastic noise, where each bit is independently flipped with probability ε. We analyze the minimal overhead that must be added by the coding scheme in order to succeed in performing the computation despite the noise. Our main result is a lower bound on the communication of any noise-resilient protocol over a synchronous star network with n-parties (where all parties communicate in every round). Specifically, we show a task that can be solved by communicating T bits over the noise-free network, but for which any protocol with success probability of 1-o(1) must communicate at least Ω(T log n / log log n) bits when the channels are noisy. By a 1994 result of Rajagopalan and Schulman, the slowdown we prove is the highest one can obtain on any topology, up to a log log n factor. We complete our lower bound with a matching coding scheme that achieves the same overhead; thus, the capacity of (synchronous) star networks is Θ(log log n / log n). Our bounds prove that, despite several previous coding schemes with rate Ω(1) for certain topologies, no coding scheme with constant rate Ω(1) exists for arbitrary n-party noisy networks.
The IoT will host a large number of co-existing cyber-physical applications. Continuous change, application interference, environment dynamics and uncertainty lead to complex effects which must be controlled to give performance and application guarantees. Application and platform self-configuration and self-awareness are one paradigm to approach this challenge. They can leverage context knowledge to control platform and application functions and their interaction. They could play a dominant role in large scale cyber-physical systems and systems-of-systems, simply because no person can oversee the whole system functionality and dynamics. IoT adds a new dimension because Internet based services will increasingly be used in such system functions. Autonomous vehicles accessing cloud services for efficiency and comfort as well as to reach the required level of safety and security are an example. Such vehicle platforms will communicate with a service infrastructure that must be reliable and highly responsive. Automated continuous self-configuration of data storage might be a good basis for such services up to the point where the different self-x strategies might affect each other, in a positive or negative form. This paper contains three contributions from different domains representing the current status of self-aware systems as they will meet in the Internet-of-Things and closes with a short discussion of upcoming challenges.
While the potential advantages of geographic forwarding in wireless sensor networks (WSN) have been demonstrated for a while now, research in applying Information Centric Networking (ICN) has only gained momentum in the last few years. In this paper, we bridge these two worlds by proposing an ICN-compliant and secure implementation of geographic forwarding for ICN. We implement as a proof of concept the Greedy Perimeter Stateless Routing (GPSR) algorithm and compare its performance to that of vanilla ICN forwarding. We also evaluate the cost of security in 802.15.4 networks in terms of energy, memory and CPU footprint. We show that in sparse but large networks, GPSR outperforms vanilla ICN forwarding in both memory footprint and CPU consumption. However, GPSR is more energy intensive because of the cost of communications.
Information Centric Networking (ICN) paradigms nicely fit the world of wireless sensors, whose devices have tight constraints. In this poster, we compare two alternative designs for secure association of new IoT devices in existing ICN deployments, which are based on asymmetric and symmetric cryptography respectively. While the security properties of both approaches are equivalent, an interesting trade-off arises between properties of the protocol vs properties of its implementation in current IoT boards. Indeed, while the asymmetric-keys based approach incurs a lower traffic overhead (of about 30%), we find that its implementation is significantly more energy- and time-consuming due to the cost of cryptographic operations (it requires up to 41x more energy and 8x more time).
Software development is often accompanied by security audits such as penetration tests, usually performed on behalf of the software vendor. In penetration tests security experts identify entry points for attacks in a software product. Many development teams undergo such audits for the first time if their product is attacked or faces new security concerns. The audits often serve as an eye-opener for development teams: they realize that security requires much more attention. However, there is a lack of clarity with regard to what lasting benefits developers can reap from penetration tests. We report from a one-year study of a penetration test run at a major software vendor, and describe how a software development team managed to incorporate the test findings. Results suggest that penetration tests improve developers' security awareness, but that long-lasting enhancements of development practices are hampered by a lack of dedicated security stakeholders and if security is not properly reflected in the communicative and collaborative structures of the organization.
We present the first formal verification of state machine safety for the Raft consensus protocol, a critical component of many distributed systems. We connected our proof to previous work to establish an end-to-end guarantee that our implementation provides linearizable state machine replication. This proof required iteratively discovering and proving 90 system invariants. Our verified implementation is extracted to OCaml and runs on real networks. The primary challenge we faced during the verification process was proof maintenance, since proving one invariant often required strengthening and updating other parts of our proof. To address this challenge, we propose a methodology of planning for change during verification. Our methodology adapts classical information hiding techniques to the context of proof assistants, factors out common invariant-strengthening patterns into custom induction principles, proves higher-order lemmas that show any property proved about a particular component implies analogous properties about related components, and makes proofs robust to change using structural tactics. We also discuss how our methodology may be applied to systems verification more broadly.
Computing systems that make security decisions often fail to take into account human expectations. This failure occurs because human expectations are typically drawn from in textual sources (e.g., mobile application description and requirements documents) and are hard to extract and codify. Recently, researchers in security and software engineering have begun using text analytics to create initial models of human expectation. In this tutorial, we provide an introduction to popular techniques and tools of natural language processing (NLP) and text mining, and share our experiences in applying text analytics to security problems. We also highlight the current challenges of applying these techniques and tools for addressing security problems. We conclude the tutorial with discussion of future research directions.
The explosion in Internet-connected household devices, such as light-bulbs, smoke-alarms, power-switches, and webcams, is creating new vectors for attacking "smart-homes" at an unprecedented scale. Common perception is that smart-home IoT devices are protected from Internet attacks by the perimeter security offered by home routers. In this paper we demonstrate how an attacker can infiltrate the home network via a doctored smart-phone app. Unbeknownst to the user, this app scouts for vulnerable IoT devices within the home, reports them to an external entity, and modifies the firewall to allow the external entity to directly attack the IoT device. The ability to infiltrate smart-homes via doctored smart-phone apps demonstrates that home routers are poor protection against Internet attacks and highlights the need for increased security for IoT devices.
Within few years, Cloud computing has emerged as the most promising IT business model. Thanks to its various technical and financial advantages, Cloud computing continues to convince every day new users coming from scientific and industrial sectors. To satisfy the various users' requirements, Cloud providers must maximize the performance of their IT resources to ensure the best service at the lowest cost. The performance optimization efforts in the Cloud can be achieved at different levels and aspects. In the present paper, we propose to introduce a fuzzy logic process in scheduling strategy for public Cloud in order to improve the response time, processing time and total cost. In fact, fuzzy logic has proven his ability to solve the problem of optimization in several fields such as data mining, image processing, networking and much more.
In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to Łukasiewicz logic. The MaxSAT problem for a set of formulae Φ is the problem of finding an assignment to the variables in Φ that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2)Mixed Integer Linear Programming (MILP) and (3)Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.
Whether it is for conditional statement, constant, opaque predicate or equation obfuscation, Mixed Boolean Arithmetics (MBA) technique is a powerful tool providing concrete ways to achieve obfuscation. Recent papers ([22,1]) presented ways to mix such tools with permutation polynomials modulo 2n in order to make them more resilient to SMT solvers. However, because of limitations regarding the inversion of such permutations, the set of permutation polynomials presented suffer some restrictions. Such restrictions bring several methods of arithmetic simplification, decreasing their effectiveness at hiding information. In this work, we present general methods for permutation polynomials inversion. Those methods allow us to remove some of the restrictions presented in the literature, making simplification methods less effective. We discuss complexity and limits of these methods, and conclude that not only current simplification methods may not be as effective as we thought, but they are still many uses of polynomial permutations in obfuscation that are yet to be explored.
Massively Open Online Courses (MOOCs) provide a unique opportunity to reach out to students who would not normally be reached by alleviating the need to be physically present in the classroom. However, teaching software security coursework outside of a classroom setting can be challenging. What are the challenges when converting security material from an on-campus course to the MOOC format? The goal of this research is to assist educators in constructing software security coursework by providing a comparison of classroom courses and MOOCs. In this work, we compare demographic information, student motivations, and student results from an on-campus software security course and a MOOC version of the same course. We found that the two populations of students differed, with the MOOC reaching a more diverse set of students than the on-campus course. We found that students in the on-campus course had higher quiz scores, on average, than students in the MOOC. Finally, we document our experience running the courses and what we would do differently to assist future educators constructing similar MOOC's.
Security situational awareness is an essential building block in order to estimate security level of systems and to decide how to protect networked systems from cyber attacks. In this extended abstract we envision a model that combines results from security metrics to 3d network visualisation. The purpose is to apply security metrics to gather data from individual hosts. Simultaneously, the whole network is visualised in a 3d format, including network hosts and their connections. The proposed model makes it possible to offer enriched situational awareness for security administrators. This can be achieved by adding information pertaining to individual host into the network level 3d visualisation. Thus, administrator can see connected hosts and how the security of these hosts differs at one glance.
Cyber-Physical Systems (CPSs) are often tested at different test levels following "X-in-the-Loop" configurations: Model-, Software- and Hardware-in-the-loop (MiL, SiL and HiL). While MiL and SiL test levels aim at testing functional requirements at the system level, the HiL test level tests functional as well as non-functional requirements by performing a real-time simulation. As testing CPS product line configurations is costly due to the fact that there are many variants to test, test cases are long, the physical layer has to be simulated and co-simulation is often necessary. It is therefore extremely important to select the appropriate test cases that cover the objectives of each level in an allowable amount of time. We propose an efficient test case selection approach adapted to the "X-in-the-Loop" test levels. Search algorithms are employed to reduce the amount of time required to test configurations of CPS product lines while achieving the test objectives of each level. We empirically evaluate three commonly-used search algorithms, i.e., Genetic Algorithm (GA), Alternating Variable Method (AVM) and Greedy (Random Search (RS) is used as a baseline) by employing two case studies with the aim of integrating the best algorithm into our approach. Results suggest that as compared with RS, our approach can reduce the costs of testing CPS product line configurations by approximately 80% while improving the overall test quality.
In this paper we propose a protocol that allows end-users in a decentralized setup (without requiring any trusted third party) to protect data shipped to remote servers using two factors - knowledge (passwords) and possession (a time based one time password generation for authentication) that is portable. The protocol also supports revocation and recreation of a new possession factor if the older possession factor is compromised, provided the legitimate owner still has a copy of the possession factor. Furthermore, akin to some other recent works, our approach naturally protects the outsourced data from the storage servers themselves, by application of encryption and dispersal of information across multiple servers. We also extend the basic protocol to demonstrate how collaboration can be supported even while the stored content is encrypted, and where each collaborator is still restrained from accessing the data through a multi-factor access mechanism. Such techniques achieving layered security is crucial to (opportunistically) harness storage resources from untrusted entities.
The threat from insiders is an ever-growing concern for organisations, and in recent years the harm that insiders pose has been widely demonstrated. This paper describes our recent work into how we might support insider threat detection when actions are taken which can be immediately determined as of concern because they fall into one of two categories: they violate a policy which is specifically crafted to describe behaviours that are highly likely to be of concern if they are exhibited, or they exhibit behaviours which follow a pattern of a known insider threat attack. In particular, we view these concerning actions as something that we can design and implement tripwires within a system to detect. We then orchestrate these tripwires in conjunction with an anomaly detection system and present an approach to formalising tripwires of both categories. Our intention being that by having a single framework for describing them, alongside a library of existing tripwires in use, we can provide the community of practitioners and researchers with the basis to document and evolve this common understanding of tripwires.
Nowadays, sentiment analysis methods become more and more popular especially with the proliferation of social media platform users number. In the same context, this paper presents a sentiment analysis approach which can faithfully translate the sentimental orientation of Arabic Twitter posts, based on a novel data representation and machine learning techniques. The proposed approach applied a wide range of features: lexical, surface-form, syntactic, etc. We also made use of lexicon features inferred from two Arabic sentiment words lexicons. To build our supervised sentiment analysis system, we use several standard classification methods (Support Vector Machines, K-Nearest Neighbour, Naïve Bayes, Decision Trees, Random Forest) known by their effectiveness over such classification issues. In our study, Support Vector Machines classifier outperforms other supervised algorithms in Arabic Twitter sentiment analysis. Via an ablation experiments, we show the positive impact of lexicon based features on providing higher prediction performance.
This panel will discuss and debate what role(s) the information technology discipline should have in cybersecurity. Diverse viewpoints will be considered including current and potential ACM curricular recommendations, current and potential ABET and NSA accreditation criteria, the emerging cybersecurity discipline(s), consideration of government frameworks, the need for a multi-disciplinary approach to cybersecurity, and what aspects of cybersecurity should be under information technology's purview.