Visible to the public Biblio

Found 2859 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2023-01-05
Hammi, Badis, Idir, Mohamed Yacine, Khatoun, Rida.  2022.  A machine learning based approach for the detection of sybil attacks in C-ITS. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
The intrusion detection systems are vital for the sustainability of Cooperative Intelligent Transportation Systems (C-ITS) and the detection of sybil attacks are particularly challenging. In this work, we propose a novel approach for the detection of sybil attacks in C-ITS environments. We provide an evaluation of our approach using extensive simulations that rely on real traces, showing our detection approach's effectiveness.
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Wagner, Eric, Matzutt, Roman, Pennekamp, Jan, Bader, Lennart, Bajelidze, Irakli, Wehrle, Klaus, Henze, Martin.  2022.  Scalable and Privacy-Focused Company-Centric Supply Chain Management. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
Blockchain technology promises to overcome trust and privacy concerns inherent to centralized information sharing. However, current decentralized supply chain management systems do either not meet privacy and scalability requirements or require a trustworthy consortium, which is challenging for increasingly dynamic supply chains with constantly changing participants. In this paper, we propose CCChain, a scalable and privacy-aware supply chain management system that stores all information locally to give companies complete sovereignty over who accesses their data. Still, tamper protection of all data through a permissionless blockchain enables on-demand tracking and tracing of products as well as reliable information sharing while affording the detection of data inconsistencies. Our evaluation confirms that CCChain offers superior scalability in comparison to alternatives while also enabling near real-time tracking and tracing for many, less complex products.
Jiang, Xiping, Wang, Qian, Du, Mingming, Ding, Yilin, Hao, Jian, Li, Ying, Liu, Qingsong.  2022.  Research on GIS Isolating Switch Mechanical Fault Diagnosis based on Cross-Validation Parameter Optimization Support Vector Machine. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
GIS equipment is an important component of power system, and mechanical failure often occurs in the process of equipment operation. In order to realize GIS equipment mechanical fault intelligent detection, this paper presents a mechanical fault diagnosis model for GIS equipment based on cross-validation parameter optimization support vector machine (CV-SVM). Firstly, vibration experiment of isolating switch was carried out based on true 110 kV GIS vibration simulation experiment platform. Vibration signals were sampled under three conditions: normal, plum finger angle change fault, plum finger abrasion fault. Then, the c and G parameters of SVM are optimized by cross validation method and grid search method. A CV-SVM model for mechanical fault diagnosis was established. Finally, training and verification are carried out by using the training set and test set models in different states. The results show that the optimization of cross-validation parameters can effectively improve the accuracy of SVM classification model. It can realize the accurate identification of GIS equipment mechanical fault. This method has higher diagnostic efficiency and performance stability than traditional machine learning. This study can provide reference for on-line monitoring and intelligent fault diagnosis analysis of GIS equipment mechanical vibration.
2022-12-23
Huo, Da, Li, Xiaoyong, Li, Linghui, Gao, Yali, Li, Ximing, Yuan, Jie.  2022.  The Application of 1D-CNN in Microsoft Malware Detection. 2022 7th International Conference on Big Data Analytics (ICBDA). :181–187.
In the computer field, cybersecurity has always been the focus of attention. How to detect malware is one of the focuses and difficulties in network security research effectively. Traditional existing malware detection schemes can be mainly divided into two methods categories: database matching and the machine learning method. With the rise of deep learning, more and more deep learning methods are applied in the field of malware detection. Deeper semantic features can be extracted via deep neural network. The main tasks of this paper are as follows: (1) Using machine learning methods and one-dimensional convolutional neural networks to detect malware (2) Propose a machine The method of combining learning and deep learning is used for detection. Machine learning uses LGBM to obtain an accuracy rate of 67.16%, and one-dimensional CNN obtains an accuracy rate of 72.47%. In (2), LGBM is used to screen the importance of features and then use a one-dimensional convolutional neural network, which helps to further improve the detection result has an accuracy rate of 78.64%.
2022-12-20
Song, Suhwan, Hur, Jaewon, Kim, Sunwoo, Rogers, Philip, Lee, Byoungyoung.  2022.  R2Z2: Detecting Rendering Regressions in Web Browsers through Differential Fuzz Testing. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1818–1829.
A rendering regression is a bug introduced by a web browser where a web page no longer functions as users expect. Such rendering bugs critically harm the usability of web browsers as well as web applications. The unique aspect of rendering bugs is that they affect the presented visual appearance of web pages, but those web pages have no pre-defined correct appearance. Therefore, it is challenging to automatically detect errors in their appearance. In practice, web browser vendors rely on non-trivial and time-prohibitive manual analysis to detect and handle rendering regressions. This paper proposes R2Z2, an automated tool to find rendering regressions. R2Z2 uses the differential fuzz testing approach, which repeatedly compares the rendering results of two different versions of a browser while providing the same HTML as input. If the rendering results are different, R2Z2 further performs cross browser compatibility testing to check if the rendering difference is indeed a rendering regression. After identifying a rendering regression, R2Z2 will perform an in-depth analysis to aid in fixing the regression. Specifically, R2Z2 performs a delta-debugging-like analysis to pinpoint the exact browser source code commit causing the regression, as well as inspecting the rendering pipeline stages to pinpoint which pipeline stage is responsible. We implemented a prototype of R2Z2 particularly targeting the Chrome browser. So far, R2Z2 found 11 previously undiscovered rendering regressions in Chrome, all of which were confirmed by the Chrome developers. Importantly, in each case, R2Z2 correctly reported the culprit commit. Moreover, R2Z2 correctly pin-pointed the culprit rendering pipeline stage in all but one case.
ISSN: 1558-1225
Hassanshahi, Behnaz, Lee, Hyunjun, Krishnan, Paddy.  2022.  Gelato: Feedback-driven and Guided Security Analysis of Client-side Web Applications. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :618–629.
Modern web applications are getting more sophisticated by using frameworks that make development easy, but pose challenges for security analysis tools. New analysis techniques are needed to handle such frameworks that grow in number and popularity. In this paper, we describe Gelato that addresses the most crucial challenges for a security-aware client-side analysis of highly dynamic web applications. In particular, we use a feedback-driven and state-aware crawler that is able to analyze complex framework-based applications automatically, and is guided to maximize coverage of security-sensitive parts of the program. Moreover, we propose a new lightweight client-side taint analysis that outperforms the state-of-the-art tools, requires no modification to browsers, and reports non-trivial taint flows on modern JavaScript applications. Gelato reports vulnerabilities with higher accuracy than existing tools and achieves significantly better coverage on 12 applications of which three are used in production.
ISSN: 1534-5351
Do, Quoc Huy, Hosseyni, Pedram, Küsters, Ralf, Schmitz, Guido, Wenzler, Nils, Würtele, Tim.  2022.  A Formal Security Analysis of the W3C Web Payment APIs: Attacks and Verification. 2022 IEEE Symposium on Security and Privacy (SP). :215–234.
Payment is an essential part of e-commerce. Merchants usually rely on third-parties, so-called payment processors, who take care of transferring the payment from the customer to the merchant. How a payment processor interacts with the customer and the merchant varies a lot. Each payment processor typically invents its own protocol that has to be integrated into the merchant’s application and provides the user with a new, potentially unknown and confusing user experience.Pushed by major companies, including Apple, Google, Master-card, and Visa, the W3C is currently developing a new set of standards to unify the online checkout process and “streamline the user’s payment experience”. The main idea is to integrate payment as a native functionality into web browsers, referred to as the Web Payment APIs. While this new checkout process will indeed be simple and convenient from an end-user perspective, the technical realization requires rather significant changes to browsers.Many major browsers, such as Chrome, Firefox, Edge, Safari, and Opera, already implement these new standards, and many payment processors, such as Google Pay, Apple Pay, or Stripe, support the use of Web Payment APIs for payments. The ecosystem is constantly growing, meaning that the Web Payment APIs will likely be used by millions of people worldwide.So far, there has been no in-depth security analysis of these new standards. In this paper, we present the first such analysis of the Web Payment APIs standards, a rigorous formal analysis. It is based on the Web Infrastructure Model (WIM), the most comprehensive model of the web infrastructure to date, which, among others, we extend to integrate the new payment functionality into the generic browser model.Our analysis reveals two new critical vulnerabilities that allow a malicious merchant to over-charge an unsuspecting customer. We have verified our attacks using the Chrome implementation and reported these problems to the W3C as well as the Chrome developers, who have acknowledged these problems. Moreover, we propose fixes to the standard, which by now have been adopted by the W3C and Chrome, and prove that the fixed Web Payment APIs indeed satisfy strong security properties.
ISSN: 2375-1207
Hariharan, Meenu, Thakar, Akash, Sharma, Parvesh.  2022.  Forensic Analysis of Private Mode Browsing Artifacts in Portable Web Browsers Using Memory Forensics. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–5.
The popularity of portable web browsers is increasing due to its convenient and compact nature along with the benefit of the data being stored and transferred easily using a USB drive. As technology gets updated frequently, developers are working on web browsers that can be portable in nature with additional security features like private mode browsing, built in ad blockers etc. The increased probability of using portable web browsers for carrying out nefarious activities is a result of cybercriminals with the thought that if they use portable web browsers in private mode it won't leave a digital footprint. Hence, the research paper aims at performing a comparative study of four portable web browsers namely Brave, TOR, Vivaldi, and Maxthon along with various memory acquisition tools to understand the quantity and quality of the data that can be recovered from the memory dump in two different conditions that is when the browser tabs were open and when the browser tabs were closed in a system to aid the forensic investigators.
Hasan, Syed Rakib, Chowdhury, Mostafa Zaman, Saiam, Md..  2022.  A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
Hussain, G K Jakir, Shruthe, M, Rithanyaa, S, Madasamy, Saravana Rajesh, Velu, Nandagopal S.  2022.  Visible Light Communication using Li-Fi. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :257–262.
Over earlier years of huge technical developments, the need for a communication system has risen tremendously. Inrecent times, public realm interaction has been a popular area, hence the research group is emphasizing the necessity of quick and efficient broadband speeds, as well as upgraded security protocols. The main objective of this project work is to combine conventional Li-Fi and VLC techniques for video communication. VLC is helping to deliver fast data speeds, bandwidth efficiency, and a relatively secure channel of communication. Li-Fi is an inexpensive wireless communication (WC) system. Li-Fi can transmit information (text, audio, and video) to any electronic device via the LEDs that are positioned in the space to provide lighting. Li-Fi provides more advantages than Wi-Fi, such as security, high efficiency, speed, throughput, and low latency. The information can be transferred based on the flash property of the LED. Communication is accomplished by turning on and off LED lights at a faster pace than the human visual system can detect.
ISSN: 2644-1802
2022-12-09
Han, Wendie, Zhang, Rui, Zhang, Lei, Wang, Lulu.  2022.  A Secure and Receiver-Unrestricted Group Key Management Scheme for Mobile Ad-hoc Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :986—991.

Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.

Hashmi, Saad Sajid, Dam, Hoa Khanh, Smet, Peter, Chhetri, Mohan Baruwal.  2022.  Towards Antifragility in Contested Environments: Using Adversarial Search to Learn, Predict, and Counter Open-Ended Threats. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :141—146.
Resilience and antifragility under duress present significant challenges for autonomic and self-adaptive systems operating in contested environments. In such settings, the system has to continually plan ahead, accounting for either an adversary or an environment that may negate its actions or degrade its capabilities. This will involve projecting future states, as well as assessing recovery options, counter-measures, and progress towards system goals. For antifragile systems to be effective, we envision three self-* properties to be of key importance: self-exploration, self-learning and self-training. Systems should be able to efficiently self-explore – using adversarial search – the potential impact of the adversary’s attacks and compute the most resilient responses. The exploration can be assisted by prior knowledge of the adversary’s capabilities and attack strategies, which can be self-learned – using opponent modelling – from previous attacks and interactions. The system can self-train – using reinforcement learning – such that it evolves and improves itself as a result of being attacked. This paper discusses those visions and outlines their realisation in AWaRE, a cyber-resilient and self-adaptive multi-agent system.
Tunc, Cihan, Hariri, Salim.  2022.  Self-Protection for Unmanned Autonomous Vehicles (SP-UAV): Design Overview and Evaluation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :128—132.
Unmanned autonomous vehicles (UAVs) have been receiving high interest lately due to their wide range of potential deployment options that can touch all aspects of our life and economy, such as transportation, delivery, healthcare, surveillance. However, UAVs have also introduced many new vulnerabilities and attack surfaces that can be exploited by cyberattacks. Due to their complexity, autonomous operations, and being relatively new technologies, cyberattacks can be persistent, complex, and can propagate rapidly to severely impact the main UAV functions such as mission management, support, processing operations, maneuver operations, situation awareness. Furthermore, such cyberattacks can also propagate among other UAVs or even their control stations and may even endanger human life. Hence, we need self-protection techniques with an autonomic management approach. In this paper we present our approach to implement self-protection of UAVs (SP-UAV) such that they can continue their critical functions despite cyberattacks targeting UAV operations or services. We present our design approach and implementation using a unified management interface based on three ports: Configuration, observer, and control ports. We have implemented the SP-UAV using C and demonstrated using different attack scenarios how we can apply autonomic responses without human involvement to tolerate cyberattacks against the UAV operations.
Lin, Yuhang, Tunde-Onadele, Olufogorehan, Gu, Xiaohui, He, Jingzhu, Latapie, Hugo.  2022.  SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in Containerized Applications. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :41—50.
Container security has received much research attention recently. Previous work has proposed to apply various machine learning techniques to detect security attacks in containerized applications. On one hand, supervised machine learning schemes require sufficient labelled training data to achieve good attack detection accuracy. On the other hand, unsupervised machine learning methods are more practical by avoiding training data labelling requirements, but they often suffer from high false alarm rates. In this paper, we present SHIL, a self-supervised hybrid learning solution, which combines unsupervised and supervised learning methods to achieve high accuracy without requiring any manual data labelling. We have implemented a prototype of SHIL and conducted experiments over 41 real world security attacks in 28 commonly used server applications. Our experimental results show that SHIL can reduce false alarms by 39-91% compared to existing supervised or unsupervised machine learning schemes while achieving a higher or similar detection rate.
Zhai, Lijing, Vamvoudakis, Kyriakos G., Hugues, Jérôme.  2022.  A Graph-Theoretic Security Index Based on Undetectability for Cyber-Physical Systems. 2022 American Control Conference (ACC). :1479—1484.
In this paper, we investigate the conditions for the existence of dynamically undetectable attacks and perfectly undetectable attacks. Then we provide a quantitative measure on the security for discrete-time linear time-invariant (LTI) systems under both actuator and sensor attacks based on undetectability. Finally, the computation of proposed security index is reduced to a min-cut problem for the structured systems by graph theory. Numerical examples are provided to illustrate the theoretical results.
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
He, Song, Shi, Xiaohong, Huang, Yan, Chen, Gong, Tang, Huihui.  2022.  Design of Information System Security Evaluation Management System based on Artificial Intelligence. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :967—970.
In today's society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers' intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.
2022-12-06
Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  The Routing Protocol for low power and lossy networks (RPL) under Attack: Simulation and Analysis. 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). :143-148.

Routing protocol for low power and lossy networks (RPL) is the underlying routing protocol of 6LoWPAN, a core communication standard for the Internet of Things. In terms of quality of service (QoS), device management, and energy efficiency, RPL beats competing wireless sensor and ad hoc routing protocols. However, several attacks could threaten the network due to the problem of unauthenticated or unencrypted control frames, centralized root controllers, compromised or unauthenticated devices. Thus, in this paper, we aim to investigate the effect of topology and Resources attacks on RPL.s efficiency. The Hello Flooding attack, Increase Number attack and Decrease Rank attack are the three forms of Resources attacks and Topology attacks respectively chosen to work on. The simulations were done to understand the impact of the three different attacks on RPL performances metrics including End-to-End Delay (E2ED), throughput, Packet Delivery Ratio (PDR) and average power consumption. The findings show that the three attacks increased the E2ED, decreased the PDR and the network throughput, and degrades the network’, which further raises the power consumption of the network nodes.

Khodayer Al-Dulaimi, Omer Mohammed, Hassan Al-Dulaimi, Mohammed Khodayer, Khodayer Al-Dulaimi, Aymen Mohammed.  2022.  Analysis of Low Power Wireless Technologies used in the Internet of Things (IoT). 2022 2nd International Conference on Computing and Machine Intelligence (ICMI). :1-6.

The Internet of Things (IoT) is a novel paradigm that enables the development of a slew of Services for the future of technology advancements. When it comes to IoT applications, the cyber and physical worlds can be seamlessly integrated, but they are essentially limitless. However, despite the great efforts of standardization bodies, coalitions, companies, researchers, and others, there are still a slew of issues to overcome in order to fully realize the IoT's promise. These concerns should be examined from a variety of perspectives, including enabling technology, applications, business models, and social and environmental consequences. The focus of this paper is on open concerns and challenges from a technological standpoint. We will study the differences in technical such Sigfox, NB-IoT, LoRa, and 6LowPAN, and discuss their advantages and disadvantage for each technology compared with other technologies. Demonstrate that each technology has a position in the internet of things market. Each technology has different advantages and disadvantages it depends on the quality of services, latency, and battery life as a mention. The first will be analysis IoT technologies. SigFox technology offers a long-range, low-power, low-throughput communications network that is remarkably resistant to environmental interference, enabling information to be used efficiently in a wide variety of applications. We analyze how NB-IoT technology will benefit higher-value-added services markets for IoT devices that are willing to pay for exceptionally low latency and high service quality. The LoRa technology will be used as a low-cost device, as it has a very long-range (high coverage).

2022-12-02
Liu, Mengyao, Oostvogels, Jonathan, Michiels, Sam, Joosen, Wouter, Hughes, Danny.  2022.  BoboLink: Low Latency and Low Power Communication for Intelligent Environments. 2022 18th International Conference on Intelligent Environments (IE). :1—4.
Intelligent Environments (IEs) enrich the physical world by connecting it to software applications in order to increase user comfort, safety and efficiency. IEs are often supported by wireless networks of smart sensors and actuators, which offer multi-year battery life within small packages. However, existing radio mesh networks suffer from high latency, which precludes their use in many user interface systems such as real-time speech, touch or positioning. While recent advances in optical networks promise low end-to-end latency through symbol-synchronous transmission, current approaches are power hungry and therefore cannot be battery powered. We tackle this problem by introducing BoboLink, a mesh network that delivers low-power and low-latency optical networking through a combination of symbol-synchronous transmission and a novel wake-up technology. BoboLink delivers mesh-wide wake-up in 1.13ms, with a quiescent power consumption of 237µW. This enables building-wide human computer interfaces to be seamlessly delivered using wireless mesh networks for the first time.
Rethfeldt, Michael, Brockmann, Tim, Eckhardt, Richard, Beichler, Benjamin, Steffen, Lukas, Haubelt, Christian, Timmermann, Dirk.  2022.  Extending the FLExible Network Tester (Flent) for IEEE 802.11s WLAN Mesh Networks. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1—6.
Mesh networks based on the wireless local area network (WLAN) technology, as specified by the standards amendment IEEE 802.11s, provide for a flexible and low-cost interconnection of devices and embedded systems for various use cases. To assess the real-world performance of WLAN mesh networks and potential optimization strategies, suitable testbeds and measurement tools are required. Designed for highly automated transport-layer throughput and latency measurements, the software FLExible Network Tester (Flent) is a promising candidate. However, so far Flent does not integrate information specific to IEEE 802.11s networks, such as peer link status data or mesh routing metrics. Consequently, we propose Flent extensions that allow to additionally capture IEEE 802.11s information as part of the automated performance tests. For the functional validation of our extensions, we conduct Flent measurements in a mesh mobility scenario using the network emulation framework Mininet-WiFi.
Mohammed, Mahmood, Talburt, John R., Dagtas, Serhan, Hollingsworth, Melissa.  2021.  A Zero Trust Model Based Framework For Data Quality Assessment. 2021 International Conference on Computational Science and Computational Intelligence (CSCI). :305—307.

Zero trust security model has been picking up adoption in various organizations due to its various advantages. Data quality is still one of the fundamental challenges in data curation in many organizations where data consumers don’t trust data due to associated quality issues. As a result, there is a lack of confidence in making business decisions based on data. We design a model based on the zero trust security model to demonstrate how the trust of data consumers can be established. We present a sample application to distinguish the traditional approach from the zero trust based data quality framework.

2022-12-01
Yu, Jialin, Cristea, Alexandra I., Harit, Anoushka, Sun, Zhongtian, Aduragba, Olanrewaju Tahir, Shi, Lei, Moubayed, Noura Al.  2022.  INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
XAI with natural language processing aims to produce human-readable explanations as evidence for AI decision-making, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a single explanation, which fails to account for the diversity of human thoughts and experiences in language. This paper thus addresses this gap, by proposing a generative XAI framework, INTERACTION (explain aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder). Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation. We conduct intensive experiments with the Transformer architecture on a benchmark dataset, e-SNLI [1]. Our method achieves competitive or better performance against state-of-the-art baseline models on explanation generation (up to 4.7% gain in BLEU) and prediction (up to 4.4% gain in accuracy) in step one; it can also generate multiple diverse explanations in step two.