Biblio
Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.
In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.
Routing protocol for low power and lossy networks (RPL) is the underlying routing protocol of 6LoWPAN, a core communication standard for the Internet of Things. In terms of quality of service (QoS), device management, and energy efficiency, RPL beats competing wireless sensor and ad hoc routing protocols. However, several attacks could threaten the network due to the problem of unauthenticated or unencrypted control frames, centralized root controllers, compromised or unauthenticated devices. Thus, in this paper, we aim to investigate the effect of topology and Resources attacks on RPL.s efficiency. The Hello Flooding attack, Increase Number attack and Decrease Rank attack are the three forms of Resources attacks and Topology attacks respectively chosen to work on. The simulations were done to understand the impact of the three different attacks on RPL performances metrics including End-to-End Delay (E2ED), throughput, Packet Delivery Ratio (PDR) and average power consumption. The findings show that the three attacks increased the E2ED, decreased the PDR and the network throughput, and degrades the network’, which further raises the power consumption of the network nodes.
The Internet of Things (IoT) is a novel paradigm that enables the development of a slew of Services for the future of technology advancements. When it comes to IoT applications, the cyber and physical worlds can be seamlessly integrated, but they are essentially limitless. However, despite the great efforts of standardization bodies, coalitions, companies, researchers, and others, there are still a slew of issues to overcome in order to fully realize the IoT's promise. These concerns should be examined from a variety of perspectives, including enabling technology, applications, business models, and social and environmental consequences. The focus of this paper is on open concerns and challenges from a technological standpoint. We will study the differences in technical such Sigfox, NB-IoT, LoRa, and 6LowPAN, and discuss their advantages and disadvantage for each technology compared with other technologies. Demonstrate that each technology has a position in the internet of things market. Each technology has different advantages and disadvantages it depends on the quality of services, latency, and battery life as a mention. The first will be analysis IoT technologies. SigFox technology offers a long-range, low-power, low-throughput communications network that is remarkably resistant to environmental interference, enabling information to be used efficiently in a wide variety of applications. We analyze how NB-IoT technology will benefit higher-value-added services markets for IoT devices that are willing to pay for exceptionally low latency and high service quality. The LoRa technology will be used as a low-cost device, as it has a very long-range (high coverage).
Zero trust security model has been picking up adoption in various organizations due to its various advantages. Data quality is still one of the fundamental challenges in data curation in many organizations where data consumers don’t trust data due to associated quality issues. As a result, there is a lack of confidence in making business decisions based on data. We design a model based on the zero trust security model to demonstrate how the trust of data consumers can be established. We present a sample application to distinguish the traditional approach from the zero trust based data quality framework.