Biblio
Objective measures are ubiquitous in the formulation, design and implementation of deep space missions. Tour durations, flyby altitudes, propellant budgets, power consumption, and other metrics are essential to developing and managing NASA missions. But beyond the simple metrics of cost and workforce, it has been difficult to identify objective, quantitative measures that assist in evaluating choices made during formulation or implementation phases in terms of their impact on flight operations. As part of the development of the Europa Clipper Mission system, a set of operations metrics have been defined along with the necessary design information and software tooling to calculate them. We have applied these methods and metrics to help assess the impact to the flight team on the six options for the Clipper Tour that are currently being vetted for selection in the fall of 2021. To generate these metrics, the Clipper MOS team first designed the set of essential processes by which flight operations will be conducted, using a standard approach and template to identify (among other aspects) timelines for each process, along with their time constraints (e.g., uplinks for sequence execution). Each of the resulting 50 processes is documented in a common format and concurred by stakeholders. Process timelines were converted into generic schedules and workforce-loaded using COTS scheduling software, based on the inputs of the process authors and domain experts. Custom code was generated to create an operations schedule for a specific portion of Clipper's prime mission, with instances of a given process scheduled based on specific timing rules (e.g., process X starts once per week on Thursdays) or relative to mission events (e.g., sequence generation process begins on a Monday, at least three weeks before each Europa closest approach). Over a 5-month period, and for each of six Clipper candidate tours, the result was a 20,000+ line, workforce-loaded schedule that documents all of the process-driven work effort at the level of individual roles, along with a significant portion of the level-of-effort work. Post-processing code calculated the absolute and relative number of work hours during a nominal 5 day / 40 hour work week, the work effort during 2nd and 3rd shift, as well as 1st shift on weekends. The resultant schedules and shift tables were used to generate objective measures that can be related to both human factors and to operational risk and showed that Clipper tours which utilize 6:1 resonant (21.25 day) orbits instead of 4:1 resonant (14.17 day) orbits during the first dozen or so Europa flybys are advantageous to flight operations. A similar approach can be extended to assist missions in more objective assessments of a number of mission issues and trades, including tour selection and spacecraft design for operability.
Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.