Hoque, Mohammad Aminul, Hossain, Mahmud, Hasan, Ragib.
2022.
BenchAV: A Security Benchmarking Framework for Autonomous Driving. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :729—730.
Autonomous vehicles (AVs) are capable of making driving decisions autonomously using multiple sensors and a complex autonomous driving (AD) software. However, AVs introduce numerous unique security challenges that have the potential to create safety consequences on the road. Security mechanisms require a benchmark suite and an evaluation framework to generate comparable results. Unfortunately, AVs lack a proper benchmarking framework to evaluate the attack and defense mechanisms and quantify the safety measures. This paper introduces BenchAV – a security benchmark suite and evaluation framework for AVs to address current limitations and pressing challenges of AD security. The benchmark suite contains 12 security and performance metrics, and an evaluation framework that automates the metric collection process using Carla simulator and Robot Operating System (ROS).
Huang, Qingshui, Deng, Zijie, Feng, Guocong, Zou, Hong, Zhang, Jiafa.
2022.
Research on system construction under the operation mode of power grid cloud security management platform. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :981–984.
A unified cloud management platform is the key to efficient and secure management of cloud computing resources. To improve the operation effect of the power cloud service platform, power companies can use the micro-service architecture technology to carry out data processing, information integration, and innovative functional architecture of the power cloud service platform, realize the optimal design of the power cloud service platform and improve the power cloud service platform-security service quality. According to the technical requirements of the power cloud security management platform, this paper designs the technical architecture of the power unified cloud security management platform and expounds on the functional characteristics of the cloud security management platform to verify the feasibility and effectiveness of the cloud security management platform.
Hosam, Osama.
2022.
Intelligent Risk Management using Artificial Intelligence. 2022 Advances in Science and Engineering Technology International Conferences (ASET). :1–9.
Effective information security risk management is essential for survival of any business that is dependent on IT. In this paper we present an efficient and effective solution to find best parameters for managing cyber risks using artificial intelligence. Genetic algorithm is use as it can provide our required optimization and intelligence. Results show that GA is professional in finding the best parameters and minimizing the risk.
Onoja, Daniel, Hitchens, Michael, Shankaran, Rajan.
2022.
Security Policy to Manage Responses to DDoS Attacks on 5G IoT Enabled Devices. 2022 13th International Conference on Information and Communication Systems (ICICS). :30–35.
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.
Anderson, John, Huang, Qiqing, Cheng, Long, Hu, Hongxin.
2022.
BYOZ: Protecting BYOD Through Zero Trust Network Security. 2022 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–8.
As the COVID-19 pandemic scattered businesses and their workforces into new scales of remote work, vital security concerns arose surrounding remote access. Bring Your Own Device (BYOD) also plays a growing role in the ability of companies to support remote workforces. As more enterprises embrace concepts of zero trust in their network security posture, access control policy management problems become a more significant concern as it relates to BYOD security enforcement. This BYOD security policy must enable work from home, but enterprises have a vested interest in maintaining the security of their assets. Therefore, the BYOD security policy must strike a balance between access, security, and privacy, given the personal device use. This paper explores the challenges and opportunities of enabling zero trust in BYOD use cases. We present a BYOD policy specification to enable the zero trust access control known as BYOZ. Accompanying this policy specification, we have designed a network architecture to support enterprise zero trust BYOD use cases through the novel incorporation of continuous authentication & authorization enforcement. We evaluate our architecture through a demo implementation of BYOZ and demonstrate how it can meet the needs of existing enterprise networks using BYOD.
Hammar, Kim, Stadler, Rolf.
2022.
A System for Interactive Examination of Learned Security Policies. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–3.
We present a system for interactive examination of learned security policies. It allows a user to traverse episodes of Markov decision processes in a controlled manner and to track the actions triggered by security policies. Similar to a software debugger, a user can continue or or halt an episode at any time step and inspect parameters and probability distributions of interest. The system enables insight into the structure of a given policy and in the behavior of a policy in edge cases. We demonstrate the system with a network intrusion use case. We examine the evolution of an IT infrastructure’s state and the actions prescribed by security policies while an attack occurs. The policies for the demonstration have been obtained through a reinforcement learning approach that includes a simulation system where policies are incrementally learned and an emulation system that produces statistics that drive the simulation runs.
Deng, Chao, He, Mingxing, Wen, Xinyu, Luo, Qian.
2022.
Support Efficient User Revocation and Identity Privacy in Integrity Auditing of Shared Data. 2022 7th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :221—229.
The cloud provides storage for users to share their files in the cloud. Nowadays some shared data auditing schemes are proposed for protecting data integrity. However, preserving the identity privacy of group users and secure user revocation usually result in high computational overhead. Then a shared data auditing scheme supporting identity privacy preserving is proposed that enables users to be effectively revoked. To preserve identity privacy during the audit process, we develop an efficient authenticator generation mechanism that enables public auditing. Our solution supports efficient user revocation, where the authenticator of the revoked user does not need to be regenerated and integrity checking can be performed appropriately. At the same time, the group manager maintains two tables to ensure user traceability. When the user updates data, two tables are modified and updated by the group manager promptly. It shows that our scheme is secure by security analysis. Moreover, concrete experiments prove the performance of the system.
Lin, Xinrong, Hua, Baojian, Fan, Qiliang.
2022.
On the Security of Python Virtual Machines: An Empirical Study. 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME). :223—234.
Python continues to be one of the most popular programming languages and has been used in many safety-critical fields such as medical treatment, autonomous driving systems, and data science. These fields put forward higher security requirements to Python ecosystems. However, existing studies on machine learning systems in Python concentrate on data security, model security and model privacy, and just assume the underlying Python virtual machines (PVMs) are secure and trustworthy. Unfortunately, whether such an assumption really holds is still unknown.This paper presents, to the best of our knowledge, the first and most comprehensive empirical study on the security of CPython, the official and most deployed Python virtual machine. To this end, we first designed and implemented a software prototype dubbed PVMSCAN, then use it to scan the source code of the latest CPython (version 3.10) and other 10 versions (3.0 to 3.9), which consists of 3,838,606 lines of source code. Empirical results give relevant findings and insights towards the security of Python virtual machines, such as: 1) CPython virtual machines are still vulnerable, for example, PVMSCAN detected 239 vulnerabilities in version 3.10, including 55 null dereferences, 86 uninitialized variables and 98 dead stores; Python/C API-related vulnerabilities are very common and have become one of the most severe threats to the security of PVMs: for example, 70 Python/C API-related vulnerabilities are identified in CPython 3.10; 3) the overall quality of the code remained stable during the evolution of Python VMs with vulnerabilities per thousand line (VPTL) to be 0.50; and 4) automatic vulnerability rectification is effective: 166 out of 239 (69.46%) vulnerabilities can be rectified by a simple yet effective syntax-directed heuristics.We have reported our empirical results to the developers of CPython, and they have acknowledged us and already confirmed and fixed 2 bugs (as of this writing) while others are still being analyzed. This study not only demonstrates the effectiveness of our approach, but also highlights the need to improve the reliability of infrastructures like Python virtual machines by leveraging state-of-the-art security techniques and tools.
Zhao, Lutan, Li, Peinan, HOU, RUI, Huang, Michael C., Qian, Xuehai, Zhang, Lixin, Meng, Dan.
2022.
HyBP: Hybrid Isolation-Randomization Secure Branch Predictor. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :346—359.
Recently exposed vulnerabilities reveal the necessity to improve the security of branch predictors. Branch predictors record history about the execution of different processes, and such information from different processes are stored in the same structure and thus accessible to each other. This leaves the attackers with the opportunities for malicious training and malicious perception. Physical or logical isolation mechanisms such as using dedicated tables and flushing during context-switch can provide security but incur non-trivial costs in space and/or execution time. Randomization mechanisms incurs the performance cost in a different way: those with higher securities add latency to the critical path of the pipeline, while the simpler alternatives leave vulnerabilities to more sophisticated attacks.This paper proposes HyBP, a practical hybrid protection and effective mechanism for building secure branch predictors. The design applies the physical isolation and randomization in the right component to achieve the best of both worlds. We propose to protect the smaller tables with physically isolation based on (thread, privilege) combination; and protect the large tables with randomization. Surprisingly, the physical isolation also significantly enhances the security of the last-level tables by naturally filtering out accesses, reducing the information flow to these bigger tables. As a result, key changes can happen less frequently and be performed conveniently at context switches. Moreover, we propose a latency hiding design for a strong cipher by precomputing the "code book" with a validated, cryptographically strong cipher. Overall, our design incurs a performance penalty of 0.5% compared to 5.1% of physical isolation under the default context switching interval in Linux.
Xia, Hongyan, Zhang, David, Liu, Wei, Haller, Istvan, Sherwin, Bruce, Chisnall, David.
2022.
A Secret-Free Hypervisor: Rethinking Isolation in the Age of Speculative Vulnerabilities. 2022 IEEE Symposium on Security and Privacy (SP). :370—385.
In recent years, the epidemic of speculative side channels significantly increases the difficulty in enforcing domain isolation boundaries in a virtualized cloud environment. Although mitigations exist, the approach taken by the industry is neither a long-term nor a scalable solution, as we target each vulnerability with specific mitigations that add up to substantial performance penalties. We propose a different approach to secret isolation: guaranteeing that the hypervisor is Secret-Free (SF). A Secret-Free design partitions memory into secrets and non-secrets and reconstructs hypervisor isolation. It enforces that all domains have a minimal and secret-free view of the address space. In contrast to state-of-the-art, a Secret-Free hypervisor does not identify secrets to be hidden, but instead identifies non-secrets that can be shared, and only grants access necessary for the current operation, an allow-list approach. SF designs function with existing hardware and do not exhibit noticeable performance penalties in production workloads versus the unmitigated baseline, and outperform state-of-the-art techniques by allowing speculative execution where secrets are invisible. We implement SF in Xen (a Type-I hypervisor) to demonstrate that the design applies well to a commercial hypervisor. Evaluation shows performance comparable to baseline and up to 37% improvement in certain hypervisor paths compared with Xen default mitigations. Further, we demonstrate Secret-Free is a generic kernel isolation infrastructure for a variety of systems, not limited to Type-I hypervisors. We apply the same model in Hyper-V (Type-I), bhyve (Type-II) and FreeBSD (UNIX kernel) to evaluate its applicability and effectiveness. The successful implementations on these systems prove the generality of SF, and reveal the specific adaptations and optimizations required for each type of kernel.