Biblio
Information security of logistics services. Information security of logistics services is understood as a complex activity aimed at using information and means of its processing in order to increase the level of protection and normal functioning of the object's information environment. At the same time the main recommendations for ensuring information security of logistics processes include: logistics support of processes for ensuring the security of information flows of the enterprise; assessment of the quality and reliability of elements, reliability and efficiency of obtaining information about the state of logistics processes. However, it is possible to assess the level of information security within the organization's controlled part of the supply chain through levels and indicators. In this case, there are four levels and elements of information security of supply chains.
Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.
Cyber-attacks in electrical power system causes serious damages causing breakdown of few equipment to shutdown of the complete power system. Game theory is used as a tool to detect the cyber-attack in the power system recently. Interaction between the attackers and the defenders which is the inherent nature of the game theory is exploited to detect the cyber-attack in the power system. This paper implements the cyber-attack detection on a two-area power system controlled using the Load Frequency controller. Ant Lion Optimization is used to tune the integral controller applied in the Load Frequency Controller. Cyber-attacks that include constant injection, bias injection, overcompensation, and negative compensation are tested on the Game theory-based attack detection algorithm proposed. It is considered that the smart meters are attacked with the attacks by manipulating the original data in the power system. MATLAB based implementation is developed and observed that the defender action is satisfactory in the two-area system considered. Tuning of integral controller in the Load Frequency controller in the two-area system is also observed to be effective.
The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.
This paper addresses security and risk management of hardware and embedded systems across several applications. There are three companies involved in the research. First is an energy technology company that aims to leverage electric- vehicle batteries through vehicle to grid (V2G) services in order to provide energy storage for electric grids. Second is a defense contracting company that provides acquisition support for the DOD's conventional prompt global strike program (CPGS). These systems need protections in their production and supply chains, as well as throughout their system life cycles. Third is a company that deals with trust and security in advanced logistics systems generally. The rise of interconnected devices has led to growth in systems security issues such as privacy, authentication, and secure storage of data. A risk analysis via scenario-based preferences is aided by a literature review and industry experts. The analysis is divided into various sections of Criteria, Initiatives, C-I Assessment, Emergent Conditions (EC), Criteria-Scenario (C-S) relevance and EC Grouping. System success criteria, research initiatives, and risks to the system are compiled. In the C-I Assessment, a rating is assigned to signify the degree to which criteria are addressed by initiatives, including research and development, government programs, industry resources, security countermeasures, education and training, etc. To understand risks of emergent conditions, a list of Potential Scenarios is developed across innovations, environments, missions, populations and workforce behaviors, obsolescence, adversaries, etc. The C-S Relevance rates how the scenarios affect the relevance of the success criteria, including cost, schedule, security, return on investment, and cascading effects. The Emergent Condition Grouping (ECG) collates the emergent conditions with the scenarios. The generated results focus on ranking Initiatives based on their ability to negate the effects of Emergent Conditions, as well as producing a disruption score to compare a Potential Scenario's impacts to the ranking of Initiatives. The results presented in this paper are applicable to the testing and evaluation of security and risk for a variety of embedded smart devices and should be of interest to developers, owners, and operators of critical infrastructure systems.