Visible to the public Biblio

Found 1398 results

Filters: First Letter Of Last Name is N  [Clear All Filters]
2022-06-30
Mathai, Angelo, Nirmal, Atharv, Chaudhari, Purva, Deshmukh, Vedant, Dhamdhere, Shantanu, Joglekar, Pushkar.  2021.  Audio CAPTCHA for Visually Impaired. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—5.
Completely Automated Public Turing Tests (CAPTCHA) have been used to differentiate between computers and humans for quite some time now. There are many different varieties of CAPTCHAs - text-based, image-based, audio, video, arithmetic, etc. However, not all varieties are suitable for the visually impaired. As time goes by and Spambots and APIs grow more accurate, the CAPTCHA tests have been constantly updated to stay relevant, but that has not happened with the audio CAPTCHA. There exists an audio CAPTCHA intended for the blind/visually impaired but many blind/visually impaired find it difficult to solve. We propose an alternative to the existing system, which would make use of unique sound samples layered with music generated through GANs (Generative Adversarial Networks) along with noise and other layers of sounds to make it difficult to dissect. The user has to count the number of times the unique sound was heard in the sample and then input that number. Since there are no letters or numbers involved in the samples, speech-to-text bots/APIs cannot be used directly to decipher this system. Also, any user regardless of their native language can comfortably use this system.
2022-06-15
Nair, P. Rajitha, Dorai, D. Ramya.  2021.  Evaluation of Performance and Security of Proof of Work and Proof of Stake using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :279–283.
Storing information in Blockchain has become in vogue in the Technical and Communication Industry with many major players jumping into the bandwagon. Two of the most prominent enablers for Blockchain are “Proof of Work” and “Proof of Stake”. Proof of work includes the members solving the complex problem without having a particular need for the solution (except as evidence, of course), which absorbs a large number of resources in turn. The proof of stake doesn’t require as many resources to enable Blockchain secure information store. Both methodologies have their advantages and their shortcomings. The article attempts to review the current literature and collate the results of the study to measure the performance of both the methodologies and to arrive at a consensus regarding either or both methodologies to implement Blockchain to store data. Post reviewing the performance aspects and security features of both Proofs of Stake and Proof of Work the reviewer attempts to arrive at a secure and better performing blended Blockchain methodology that has wide industry practical application.
2022-06-14
Hataba, Muhammad, Sherif, Ahmed, Elsersy, Mohamed, Nabil, Mahmoud, Mahmoud, Mohamed, Almotairi, Khaled H..  2021.  Privacy-Preserving Biometric-based Authentication Scheme for Electric Vehicles Charging System. 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM). :86–91.
Nowadays, with the continuous increase in oil prices and the worldwide shift towards clean energy, all-electric vehicles are booming. Thence, these vehicles need widespread charging systems operating securely and reliably. Consequently, these charging systems need the most robust cybersecurity measures and strong authentication mechanisms to protect its user. This paper presents a new security scheme leveraging human biometrics in terms of iris recognition to defend against multiple types of cyber-attacks such as fraudulent identities, man-in-the-middle attacks, or unauthorized access to electric vehicle charging stations. Fundamentally, the proposed scheme implements a security mechanism based on the inherently unique characteristics of human eye biometric. The objective of the proposed scheme is to enhance the security of electric vehicle charging stations by using a low-cost and efficient authentication using k-Nearest Neighbours (KNN), which is a lightweight encryption algorithm.We tested our system on high-quality images obtained from the standard IITD iris database to search over the encrypted database and authenticate a legitimate user. The results showed that our proposed technique had minimal communication and computation overhead, which is quite suitable for the resource-limited charging station devices. Furthermore, we proved that our scheme outperforms other existing techniques.
Kawanishi, Yasuyuki, Nishihara, Hideaki, Yoshida, Hirotaka, Hata, Yoichi.  2021.  A Study of The Risk Quantification Method focusing on Direct-Access Attacks in Cyber-Physical Systems. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :298–305.

Direct-access attacks were initially considered as un-realistic threats in cyber security because the attacker can more easily mount other non-computerized attacks like cutting a brake line. In recent years, some research into direct-access attacks have been conducted especially in the automotive field, for example, research on an attack method that makes the ECU stop functioning via the CAN bus. The problem with existing risk quantification methods is that direct-access attacks seem not to be recognized as serious threats. To solve this problem, we propose a new risk quantification method by applying vulnerability evaluation criteria and by setting metrics. We also confirm that direct-access attacks not recognized by conventional methods can be evaluated appropriately, using the case study of an automotive system as an example of a cyber-physical system.

2022-06-10
Nguyen, Tien N., Choo, Raymond.  2021.  Human-in-the-Loop XAI-enabled Vulnerability Detection, Investigation, and Mitigation. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1210–1212.
The need for cyber resilience is increasingly important in our technology-dependent society, where computing systems, devices and data will continue to be the target of cyber attackers. Hence, we propose a conceptual framework called ‘Human-in-the-Loop Explainable-AI-Enabled Vulnerability Detection, Investigation, and Mitigation’ (HXAI-VDIM). Specifically, instead of resolving complex scenario of security vulnerabilities as an output of an AI/ML model, we integrate the security analyst or forensic investigator into the man-machine loop and leverage explainable AI (XAI) to combine both AI and Intelligence Assistant (IA) to amplify human intelligence in both proactive and reactive processes. Our goal is that HXAI-VDIM integrates human and machine in an interactive and iterative loop with security visualization that utilizes human intelligence to guide the XAI-enabled system and generate refined solutions.
2022-06-09
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.  2021.  SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
Trestioreanu, Lucian, Nita-Rotaru, Cristina, Malhotra, Aanchal, State, Radu.  2021.  SPON: Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay. 2021 IEEE Conference on Communications and Network Security (CNS). :92–100.
Payment systems are a critical component of everyday life in our society. While in many situations payments are still slow, opaque, siloed, expensive or even fail, users expect them to be fast, transparent, cheap, reliable and global. Recent technologies such as distributed ledgers create opportunities for near-real-time, cheaper and more transparent payments. However, in order to achieve a global payment system, payments should be possible not only within one ledger, but also across different ledgers and geographies.In this paper we propose Secure Payments with Overlay Networks (SPON), a service that enables global payments across multiple ledgers by combining the transaction exchange provided by the Interledger protocol with an intrusion-tolerant overlay of relay nodes to achieve (1) improved payment latency, (2) fault-tolerance to benign failures such as node failures and network partitions, and (3) resilience to BGP hijacking attacks. We discuss the design goals and present an implementation based on the Interledger protocol and Spines overlay network. We analyze the resilience of SPON and demonstrate through experimental evaluation that it is able to improve payment latency, recover from path outages, withstand network partition attacks, and disseminate payments fairly across multiple ledgers. We also show how SPON can be deployed to make the communication between different ledgers resilient to BGP hijacking attacks.
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
2022-06-08
Ma, Yingjue, Ni, Hui-jun, Li, Yanping.  2021.  Information Security Practice of Intelligent Knowledge Ecological Communities with Cloud Computing. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :242–245.
With powerful ability to organize, retrieve and share information, cloud computing technology has effectively improved the development of intelligent learning ecological Communities. The study finds development create a security atmosphere with all homomorphic encryption technology, virtualization technology to prevent the leakage and loss of information data. The result provided a helpful guideline to build a security environment for intelligent ecological communities.
Aksoy, Levent, Nguyen, Quang-Linh, Almeida, Felipe, Raik, Jaan, Flottes, Marie-Lise, Dupuis, Sophie, Pagliarini, Samuel.  2021.  High-level Intellectual Property Obfuscation via Decoy Constants. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–7.

This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as neural networks and filters, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoys. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) based attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants - instead of arbitrary circuit nodes - become key-protected.

Yasaei, Rozhin, Yu, Shih-Yuan, Naeini, Emad Kasaeyan, Faruque, Mohammad Abdullah Al.  2021.  GNN4IP: Graph Neural Network for Hardware Intellectual Property Piracy Detection. 2021 58th ACM/IEEE Design Automation Conference (DAC). :217–222.
Aggressive time-to-market constraints and enormous hardware design and fabrication costs have pushed the semiconductor industry toward hardware Intellectual Properties (IP) core design. However, the globalization of the integrated circuits (IC) supply chain exposes IP providers to theft and illegal redistribution of IPs. Watermarking and fingerprinting are proposed to detect IP piracy. Nevertheless, they come with additional hardware overhead and cannot guarantee IP security as advanced attacks are reported to remove the watermark, forge, or bypass it. In this work, we propose a novel methodology, GNN4IP, to assess similarities between circuits and detect IP piracy. We model the hardware design as a graph and construct a graph neural network model to learn its behavior using the comprehensive dataset of register transfer level codes and gate-level netlists that we have gathered. GNN4IP detects IP piracy with 96% accuracy in our dataset and recognizes the original IP in its obfuscated version with 100% accuracy.
Ong, Ding Sheng, Seng Chan, Chee, Ng, Kam Woh, Fan, Lixin, Yang, Qiang.  2021.  Protecting Intellectual Property of Generative Adversarial Networks from Ambiguity Attacks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3629–3638.
Ever since Machine Learning as a Service emerges as a viable business that utilizes deep learning models to generate lucrative revenue, Intellectual Property Right (IPR) has become a major concern because these deep learning models can easily be replicated, shared, and re-distributed by any unauthorized third parties. To the best of our knowledge, one of the prominent deep learning models - Generative Adversarial Networks (GANs) which has been widely used to create photorealistic image are totally unprotected despite the existence of pioneering IPR protection methodology for Convolutional Neural Networks (CNNs). This paper therefore presents a complete protection framework in both black-box and white-box settings to enforce IPR protection on GANs. Empirically, we show that the proposed method does not compromise the original GANs performance (i.e. image generation, image super-resolution, style transfer), and at the same time, it is able to withstand both removal and ambiguity attacks against embedded watermarks. Codes are available at https://github.com/dingsheng-ong/ipr-gan.
2022-06-06
Madono, Koki, Nakano, Teppei, Kobayashi, Tetsunori, Ogawa, Tetsuji.  2020.  Efficient Human-In-The-Loop Object Detection using Bi-Directional Deep SORT and Annotation-Free Segment Identification. 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :1226–1233.
The present study proposes a method for detecting objects with a high recall rate for human-supported video annotation. In recent years, automatic annotation techniques such as object detection and tracking have become more powerful; however, detection and tracking of occluded objects, small objects, and blurred objects are still difficult. In order to annotate such objects, manual annotation is inevitably required. For this reason, we envision a human-supported video annotation framework in which over-detected objects (i.e., false positives) are allowed to minimize oversight (i.e., false negatives) in automatic annotation and then the over-detected objects are removed manually. This study attempts to achieve human-in-the-loop object detection with an emphasis on suppressing the oversight for the former stage of processing in the aforementioned annotation framework: bi-directional deep SORT is proposed to reliably capture missed objects and annotation-free segment identification (AFSID) is proposed to identify video frames in which manual annotation is not required. These methods are reinforced each other, yielding an increase in the detection rate while reducing the burden of human intervention. Experimental comparisons using a pedestrian video dataset demonstrated that bi-directional deep SORT with AFSID was successful in capturing object candidates with a higher recall rate over the existing deep SORT while reducing the cost of manpower compared to manual annotation at regular intervals.
Nguyen, Vu, Cabrera, Juan A., Pandi, Sreekrishna, Nguyen, Giang T., Fitzek, Frank H. P..  2020.  Exploring the Benefits of Memory-Limited Fulcrum Recoding for Heterogeneous Nodes. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Fulcrum decoders can trade off between computational complexity and the number of received packets. This allows heterogeneous nodes to decode at different level of complexity in accordance with their computing power. Variations of Fulcrum codes, like dynamic sparsity and expansion packets (DSEP) have significantly reduced the encoders and decoders' complexity by using dynamic sparsity and expansion packets. However, limited effort had been done for recoders of Fulcrum codes and their variations, limiting their full potential when being deployed at multi-hop networks. In this paper, we investigate the drawback of the conventional Fulcrum recoding and introduce a novel recoding scheme for the family of Fulcrum codes by limiting the buffer size, and thus memory needs. Our evaluations indicate that DSEP recoding mechamism increases the recoding goodput by 50%, and reduces the decoding overhead by 60%-90% while maintaining high decoding goodput at receivers and small memory usage at recoders compared with the conventional Fulcrum recoding. This further reduces the resources needed for Fulcrum codes at the recoders.
Tiwari, Asheesh, Mehrotra, Vibhu, Goel, Shubh, Naman, Kumar, Maurya, Shashank, Agarwal, Ritik.  2021.  Developing Trends and Challenges of Digital Forensics. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1–5.
Digital forensics is concerned with identifying, reporting and responding to security breaches. It is about how to acquire, analyze and report digital evidence and using the technical skills, discovering the traces of Cyber Crime. The field of digital forensics is in high demand due to the constant threats of data breaches and information hacks. Digital Forensics is utilized in the identification and elimination of crimes in any controversy where evidence is preserved in online space. This is the use of specialized techniques for retrieval, authentication and electronic data analysis. Computer forensics deals with the identification, preservation, analysis, documentation and presentation of digital evidence. The paper has analyzed the present-day trends that includes IoT forensics, cloud forensics, network forensics and social media forensics. Recent researches have shown a wide range of threats and cyber-attacks, which requires forensic investigators and forensics scientists to simplify the digital world. Hence, all our research gives a clear view of digital forensics which could be of a great help in forensic investigation. In this research paper we have discussed about the need and way to preserve the digital evidence, so that it is not compromised at any point in time and an unalter evidence can be presented before the court of law.
Assarandarban, Mona, Bhowmik, Tanmay, Do, Anh Quoc, Chekuri, Surendra, Wang, Wentao, Niu, Nan.  2021.  Foraging-Theoretic Tool Composition: An Empirical Study on Vulnerability Discovery. 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI). :139–146.

Discovering vulnerabilities is an information-intensive task that requires a developer to locate the defects in the code that have security implications. The task is difficult due to the growing code complexity and some developer's lack of security expertise. Although tools have been created to ease the difficulty, no single one is sufficient. In practice, developers often use a combination of tools to uncover vulnerabilities. Yet, the basis on which different tools are composed is under explored. In this paper, we examine the composition base by taking advantage of the tool design patterns informed by foraging theory. We follow a design science methodology and carry out a three-step empirical study: mapping 34 foraging-theoretic patterns in a specific vulnerability discovery tool, formulating hypotheses about the value and cost of foraging when considering two composition scenarios, and performing a human-subject study to test the hypotheses. Our work offers insights into guiding developers' tool usage in detecting software vulnerabilities.

2022-05-24
Grewe, Dennis, Wagner, Marco, Ambalavanan, Uthra, Liu, Liming, Nayak, Naresh, Schildt, Sebastian.  2021.  On the Design of an Information-Centric Networking Extension for IoT APIs. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
Both the Internet of Things (IoT) and Information Centric Networking (ICN) have gathered a lot of attention from both research and industry in recent years. While ICN has proved to be beneficial in many situations, it is not widely deployed outside research projects, also not addressing needs of IoT application programming interfaces (APIs). On the other hand, today's IoT solutions are built on top of the host-centric communication model associated with the usage of the Internet Protocol (IP). This paper contributes a discussion on the need of an integration of a specific form of IoT APIs, namely WebSocket based streaming APIs, into an ICN. Furthermore, different access models are discussed and requirements are derived from real world APIs. Finally, the design of an ICN-style extension is presented using one of the examined APIs.
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
Nakamura, Ryo, Kamiyama, Noriaki.  2021.  Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
Sukjaimuk, Rungrot, Nguyen, Quang N., Sato, Takuro.  2021.  An Efficient Congestion Control Model utilizing IoT wireless sensors in Information-Centric Networks. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :210–213.
Congestion control is one of the essential keys to enhance network efficiency so that the network can perform well even in the case of packet drop. This problem is even more challenging in Information-Centric Networking (ICN), a typical Future Internet design, which employs the packet flooding policy for forwarding the information. To diminish the high traffic load due to the huge number of packets in the era of the Internet of Things (IoT), this paper proposes an effective caching and forwarding algorithm to diminish the congestion rate of the IoT wireless sensor in ICN. The proposed network system utilizes accumulative popularity-based delay transmission time for forwarding strategy and includes the consecutive chunks-based segment caching scheme. The evaluation results using ndnSIM, a widely-used ns-3 based ICN simulator, demonstrated that the proposed system can achieve less interest packet drop rate, more cache hit rate, and higher network throughput, compared to the relevant ICN-based benchmarks. These results prove that the proposed ICN design can achieve higher network efficiency with a lower congestion rate than that of the other related ICN systems using IoT sensors.
Daughety, Nathan, Pendleton, Marcus, Xu, Shouhuai, Njilla, Laurent, Franco, John.  2021.  vCDS: A Virtualized Cross Domain Solution Architecture. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :61–68.
With the paradigm shift to cloud-based operations, reliable and secure access to and transfer of data between differing security domains has never been more essential. A Cross Domain Solution (CDS) is a guarded interface which serves to execute the secure access and/or transfer of data between isolated and/or differing security domains defined by an administrative security policy. Cross domain security requires trustworthiness at the confluence of the hardware and software components which implement a security policy. Security components must be relied upon to defend against widely encompassing threats – consider insider threats and nation state threat actors which can be both onsite and offsite threat actors – to information assurance. Current implementations of CDS systems use suboptimal Trusted Computing Bases (TCB) without any formal verification proofs, confirming the gap between blind trust and trustworthiness. Moreover, most CDSs are exclusively operated by Department of Defense agencies and are not readily available to the commercial sectors, nor are they available for independent security verification. Still, more CDSs are only usable in physically isolated environments such as Sensitive Compartmented Information Facilities and are inconsistent with the paradigm shift to cloud environments. Our purpose is to address the question of how trustworthiness can be implemented in a remotely deployable CDS that also supports availability and accessibility to all sectors. In this paper, we present a novel CDS system architecture which is the first to use a formally verified TCB. Additionally, our CDS model is the first of its kind to utilize a computation-isolation approach which allows our CDS to be remotely deployable for use in cloud-based solutions.
Leong Chien, Koh, Zainal, Anazida, Ghaleb, Fuad A., Nizam Kassim, Mohd.  2021.  Application of Knowledge-oriented Convolutional Neural Network For Causal Relation Extraction In South China Sea Conflict Issues. 2021 3rd International Cyber Resilience Conference (CRC). :1–7.
Online news articles are an important source of information for decisions makers to understand the causal relation of events that happened. However, understanding the causality of an event or between events by traditional machine learning-based techniques from natural language text is a challenging task due to the complexity of the language to be comprehended by the machines. In this study, the Knowledge-oriented convolutional neural network (K-CNN) technique is used to extract the causal relation from online news articles related to the South China Sea (SCS) dispute. The proposed K-CNN model contains a Knowledge-oriented channel that can capture the causal phrases of causal relationships. A Data-oriented channel that captures the position information was added to the K-CNN model in this phase. The online news articles were collected from the national news agency and then the sentences which contain relation such as causal, message-topic, and product-producer were extracted. Then, the extracted sentences were annotated and converted into lower form and base form followed by transformed into the vector by looking up the word embedding table. A word filter that contains causal keywords was generated and a K-CNN model was developed, trained, and tested using the collected data. Finally, different architectures of the K-CNN model were compared to find out the most suitable architecture for this study. From the study, it was found out that the most suitable architecture was the K-CNN model with a Knowledge-oriented channel and a Data-oriented channel with average pooling. This shows that the linguistic clues and the position features can improve the performance in extracting the causal relation from the SCS online news articles. Keywords-component; Convolutional Neural Network, Causal Relation Extraction, South China Sea.
2022-05-20
Zahra, Ayima, Asif, Muhammad, Nagra, Arfan Ali, Azeem, Muhammad, Gilani, Syed A..  2021.  Vulnerabilities and Security Threats for IoT in Transportation and Fleet Management. 2021 4th International Conference on Computing Information Sciences (ICCIS). :1–5.
The fields of transportation and fleet management have been evolving at a rapid pace and most of these changes are due to numerous incremental developments in the area. However, a comprehensive study that critically compares and contrasts all the existing techniques and methodologies in the area is still missing. This paper presents a comparative analysis of the vulnerabilities and security threats for IoT and their mitigation strategies in the context of transportation and fleet management. Moreover, we attempt to classify the existing strategies based on their underlying principles.
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Localized Cyber Threat Mitigation Approach For Wide Area Control of FACTS. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :264–269.
We propose a localized oscillation amplitude monitoring (OAM) method for the mitigation of cyber threats directed at the wide area control (WAC) system used to coordinate control of Flexible AC Transmission Systems (FACTS) for power oscillation damping (POD) of active power flow on inter-area tie lines. The method involves monitoring the inter-area tie line active power oscillation amplitude over a sliding window. We use system instability - inferred from oscillation amplitudes growing instead of damping - as evidence of an indication of a malfunction in the WAC of FACTS, possibly indicative of a cyber attack. Monitoring the presence of such a growth allows us to determine whether any destabilizing behaviors appear after the WAC system engages to control the POD. If the WAC signal increases the oscillation amplitude over time, thereby diminishing the POD performance, the FACTS falls back to POD using local measurements. The proposed method does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the OAM method for mitigation.
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Cyber Threat Mitigation Approach For Wide Area Control of SVCs using Stability Monitoring. 2021 IEEE Madrid PowerTech. :1–6.
We propose a stability monitoring approach for the mitigation of cyber threats directed at the wide area control (WAC) system used for coordinated control of Flexible AC Transmission Systems (FACTS) used for power oscillation damping (POD) of active power flow on inter-area tie lines. The approach involves monitoring the modes of the active power oscillation on an inter-area tie line using the Matrix Pencil (MP) method. We use the stability characteristics of the observed modes as a proxy for the presence of destabilizing cyber threats. We monitor the system modes to determine whether any destabilizing modes appear after the WAC system engages to control the POD. If the WAC signal exacerbates the POD performance, the FACTS falls back to POD using local measurements. The proposed approach does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the SM approach for mitigation.