Visible to the public Biblio

Found 5182 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021-02-23
Krohmer, D., Schotten, H. D..  2020.  Decentralized Identifier Distribution for Moving Target Defense and Beyond. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

In this work, we propose a novel approach for decentralized identifier distribution and synchronization in networks. The protocol generates network entity identifiers composed of timestamps and cryptographically secure random values with a significant reduction of collision probability. The distribution is inspired by Unique Universal Identifiers and Timestamp-based Concurrency Control algorithms originating from database applications. We defined fundamental requirements for the distribution, including: uniqueness, accuracy of distribution, optimal timing behavior, scalability, small impact on network load for different operation modes and overall compliance to common network security objectives. An implementation of the proposed approach is evaluated and the results are presented. Originally designed for a domain of proactive defense strategies known as Moving Target Defense, the general architecture of the protocol enables arbitrary applications where identifier distributions in networks have to be decentralized, rapid and secure.

Aydeger, A., Saputro, N., Akkaya, K..  2020.  Cloud-based Deception against Network Reconnaissance Attacks using SDN and NFV. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :279—285.

An attacker's success crucially depends on the reconnaissance phase of Distributed Denial of Service (DDoS) attacks, which is the first step to gather intelligence. Although several solutions have been proposed against network reconnaissance attacks, they fail to address the needs of legitimate users' requests. Thus, we propose a cloud-based deception framework which aims to confuse the attacker with reconnaissance replies while allowing legitimate uses. The deception is based on for-warding the reconnaissance packets to a cloud infrastructure through tunneling and SDN so that the returned IP addresses to the attacker will not be genuine. For handling legitimate requests, we create a reflected virtual topology in the cloud to match any changes in the original physical network to the cloud topology using SDN. Through experimentations on GENI platform, we show that our framework can provide reconnaissance responses with negligible delays to the network clients while also reducing the management costs significantly.

Kumar, M., Singh, A. K..  2020.  Distributed Intrusion Detection System using Blockchain and Cloud Computing Infrastructure. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :248—252.
Intrusion Detection System is a well-known term in the domain of Network and Information Security. It's one of the important components of the Network and Information Security infrastructure. Host Intrusion Detection System (HIDS) helps to detect unauthorized use, abnormal and malicious activities on the host, whereas Network Intrusion Detection System (NIDS) helps to detect attacks and intrusion on networks. Various researchers are actively working on different approaches to improving the IDS performance and many improvements have been achieved. However, development in many other technologies and newly emerging techniques always opens the doors of opportunity to add a sharp edge to IDS and to make it more robust and reliable. This paper proposes the development of Distributed Intrusion Detection System (DIDS) using emerging and promising technologies like Blockchain upon a stable platform like cloud infrastructure.
Shah, A., Clachar, S., Minimair, M., Cook, D..  2020.  Building Multiclass Classification Baselines for Anomaly-based Network Intrusion Detection Systems. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :759—760.
This paper showcases multiclass classification baselines using different machine learning algorithms and neural networks for distinguishing legitimate network traffic from direct and obfuscated network intrusions. This research derives its baselines from Advanced Security Network Metrics & Tunneling Obfuscations dataset. The dataset captured legitimate and obfuscated malicious TCP communications on selected vulnerable network services. The multiclass classification NIDS is able to distinguish obfuscated and direct network intrusion with up to 95% accuracy.
Kaur, S., Singh, S..  2020.  Highly Secured all Optical DIM Codes using AND Gate. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :64—68.
Optical Code Division Multiple Access (OCDMA) is an inevitable innovation to cope up with the impediments of regularly expanding information traffic and numerous user accesses in optical systems. In Spectral Amplitude Coding (SAC)-OCDMA systems cross correlation and Multiple Access Interference (MAI) are utmost concerns. For eliminating the cross correlation, reducing the MAI and to enhance the security, in this work, all optical Diagonal Identity Matrices codes (DIM) with Zero Cross-Correlation (ZCC) and optical gating are presented. Chip rate of the proposed work is 0.03 ns and total 60 users are considered with semiconductor optical amplifier based AND operation. Effects of optical gating are analyzed in the presence/absence of eavesdropper in terms of Q factor and received extinction ratio. Proposed system has advantages for service provider because this is mapping free technique and can be easily designed for large number of users.
Xie, L. F., Ho, I. W., Situ, Z., Li, P..  2020.  The Impact of CFO on OFDM based Physical-layer Network Coding with QPSK Modulation. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
This paper studies Physical-layer Network Coding (PNC) in a two-way relay channel (TWRC) operated based on OFDM and QPSK modulation but with the presence of carrier frequency offset (CFO). CFO, induced by node motion and/or oscillator mismatch, causes inter-carrier interference (ICI) that impairs received signals in PNC. Our ultimate goal is to empower the relay in TWRC to decode network-coded information of the end users at a low bit error rate (BER) under CFO, as it is impossible to eliminate the CFO of both end users. For that, we first put forth two signal detection and channel decoding schemes at the relay in PNC. For signal detection, both schemes exploit the signal structure introduced by ICI, but they aim for different output, thus differing in the subsequent channel decoding. We then consider CFO compensation that adjusts the CFO values of the end nodes simultaneously and find that an optimal choice is to yield opposite CFO values in PNC. Particularly, we reveal that pilot insertion could play an important role against the CFO effect, indicating that we may trade more pilots for not just a better channel estimation but also a lower BER at the relay in PNC. With our proposed measures, we conduct simulation using repeat-accumulate (RA) codes and QPSK modulation to show that PNC can achieve a BER at the relay comparable to that of point-to-point transmissions for low to medium CFO levels.
Savva, G., Manousakis, K., Ellinas, G..  2020.  Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
Wöhnert, S.-J., Wöhnert, K. H., Almamedov, E., Skwarek, V..  2020.  Trusted Video Streams in Camera Sensor Networks. 2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC). :17—24.

Proof of integrity in produced video data by surveillance cameras requires active forensic methods such as signatures, otherwise authenticity and integrity can be comprised and data becomes unusable e. g. for legal evidence. But a simple file- or stream-signature loses its validity when the stream is cut in parts or by separating data and signature. Using the principles of security in distributed systems similar to those of blockchain and distributed ledger technologies (BC/DLT), a chain which consists of the frames of a video which frame hash values will be distributed among a camera sensor network is presented. The backbone of this Framechain within the camera sensor network will be a camera identity concept to ensure accountability, integrity and authenticity according to the extended CIA triad security concept. Modularity by secure sequences, autarky in proof and robustness against natural modulation of data are the key parameters of this new approach. It allows the standalone data and even parts of it to be used as hard evidence.

Singh, A. K..  2020.  A Multi-Layered Network Model for Blockchain Based Security Surveillance system. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.

Blockchain technology is a decentralized ledger of all transactions across peer to peer network. Being decentralized in nature, a blockchain is highly secure as no single user can alter or remove an entry in the blockchain. The security of office premises and data is a very major concern for any organization. This paper majorly focuses on its application of blockchain technology in security surveillance. This paper proposes a blockchain based multi level network model for security surveillance system. The proposed system architecture is composed of different blockchain based systems connected to a multi level decentralized blockchain system to insure authentication, secure storage, Integrity and accountability.

2021-02-22
Li, M., Zhang, Y., Sun, Y., Wang, W., Tsang, I. W., Lin, X..  2020.  I/O Efficient Approximate Nearest Neighbour Search based on Learned Functions. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :289–300.
Approximate nearest neighbour search (ANNS) in high dimensional space is a fundamental problem in many applications, such as multimedia database, computer vision and information retrieval. Among many solutions, data-sensitive hashing-based methods are effective to this problem, yet few of them are designed for external storage scenarios and hence do not optimized for I/O efficiency during the query processing. In this paper, we introduce a novel data-sensitive indexing and query processing framework for ANNS with an emphasis on optimizing the I/O efficiency, especially, the sequential I/Os. The proposed index consists of several lists of point IDs, ordered by values that are obtained by learned hashing (i.e., mapping) functions on each corresponding data point. The functions are learned from the data and approximately preserve the order in the high-dimensional space. We consider two instantiations of the functions (linear and non-linear), both learned from the data with novel objective functions. We also develop an I/O efficient ANNS framework based on the index. Comprehensive experiments on six benchmark datasets show that our proposed methods with learned index structure perform much better than the state-of-the-art external memory-based ANNS methods in terms of I/O efficiency and accuracy.
Si, Y., Zhou, W., Gai, J..  2020.  Research and Implementation of Data Extraction Method Based on NLP. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :11–15.
In order to accurately extract the data from unstructured Chinese text, this paper proposes a rule-based method based on natural language processing and regular expression. This method makes use of the language expression rules of the data in the text and other related knowledge to form the feature word lists and rule template to match the text. Experimental results show that the accuracy of the designed algorithm is 94.09%.
Martinelli, F., Marulli, F., Mercaldo, F., Marrone, S., Santone, A..  2020.  Enhanced Privacy and Data Protection using Natural Language Processing and Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Artificial Intelligence systems have enabled significant benefits for users and society, but whilst the data for their feeding are always increasing, a side to privacy and security leaks is offered. The severe vulnerabilities to the right to privacy obliged governments to enact specific regulations to ensure privacy preservation in any kind of transaction involving sensitive information. In the case of digital and/or physical documents comprising sensitive information, the right to privacy can be preserved by data obfuscation procedures. The capability of recognizing sensitive information for obfuscation is typically entrusted to the experience of human experts, who are over-whelmed by the ever increasing amount of documents to process. Artificial intelligence could proficiently mitigate the effort of the human officers and speed up processes. Anyway, until enough knowledge won't be available in a machine readable format, automatic and effectively working systems can't be developed. In this work we propose a methodology for transferring and leveraging general knowledge across specific-domain tasks. We built, from scratch, specific-domain knowledge data sets, for training artificial intelligence models supporting human experts in privacy preserving tasks. We exploited a mixture of natural language processing techniques applied to unlabeled domain-specific documents corpora for automatically obtain labeled documents, where sensitive information are recognized and tagged. We performed preliminary tests just over 10.000 documents from the healthcare and justice domains. Human experts supported us during the validation. Results we obtained, estimated in terms of precision, recall and F1-score metrics across these two domains, were promising and encouraged us to further investigations.

Suwannasa, A., Broadbent, M., Mauthe, A..  2020.  Vicinity-based Replica Finding in Named Data Networking. 2020 International Conference on Information Networking (ICOIN). :146–151.
In Named Data Networking (NDN) architectures, a content object is located according to the content's identifier and can be retrieved from all nodes that hold a replica of the content. The default forwarding strategy of NDN is to forward an Interest packet along the default path from the requester to the server to find a content object according to its name prefix. However, the best path may not be the default path, since content might also be located nearby. Hence, the default strategy could result in a sub-optimal delivery efficiency. To address this issue we introduce a vicinity-based replica finding scheme. This is based on the observation that content objects might be requested several times. Therefore, replicas can be often cached within a particular neighbourhood and thus it might be efficient to specifically look for them in order to improve the content delivery performance. Within this paper, we evaluate the optimal size of the vicinity within which content should be located (i.e. the distance between the requester and its neighbours that are considered within the content search). We also compare the proposed scheme with the default NDN forwarding strategy with respect to replica finding efficiency and network overhead. Using the proposed scheme, we demonstrate that the replica finding mechanism reduces the delivery time effectively with acceptable overhead costs.
Gündoğan, C., Amsüss, C., Schmidt, T. C., Wählisch, M..  2020.  IoT Content Object Security with OSCORE and NDN: A First Experimental Comparison. 2020 IFIP Networking Conference (Networking). :19–27.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which in common deployment protect content transfer only up to the gateway. To preserve content security end-to-end via gateways and proxies, the IETF recently developed Object Security for Constrained RESTful Environments (OSCORE), which extends CoAP with content object security features commonly known from Information Centric Networks (ICN). This paper presents a comparative analysis of protocol stacks that protect request-response transactions. We measure protocol performances of CoAP over DTLS, OSCORE, and the information-centric Named Data Networking (NDN) protocol on a large-scale IoT testbed in single- and multi-hop scenarios. Our findings indicate that (a) OSCORE improves on CoAP over DTLS in error-prone wireless regimes due to omitting the overhead of maintaining security sessions at endpoints, and (b) NDN attains superior robustness and reliability due to its intrinsic network caches and hop-wise retransmissions.
Song, Z., Kar, P..  2020.  Name-Signature Lookup System: A Security Enhancement to Named Data Networking. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1444–1448.
Named Data Networking (NDN) is a content-centric networking, where the publisher of the packet signs and encapsulates the data packet with a name-content-signature encryption to verify the authenticity and integrity of itself. This scheme can solve many of the security issues inherently compared to IP networking. NDN also support mobility since it hides the point-to-point connection details. However, an extreme attack takes place when an NDN consumer newly connects to a network. A Man-in-the-middle (MITM) malicious node can block the consumer and keep intercepting the interest packets sent out so as to fake the corresponding data packets signed with its own private key. Without knowledge and trust to the network, the NDN consumer can by no means perceive the attack and thus exposed to severe security and privacy hazard. In this paper, the Name-Signature Lookup System (NSLS) and corresponding Name-Signature Lookup Protocol (NSLP) is introduced to verify packets with their registered genuine publisher even in an untrusted network with the help of embedded keys inside Network Interface Controller (NIC), by which attacks like MITM is eliminated. A theoretical analysis of comparing NSLS with existing security model is provided. Digest algorithm SHA-256 and signature algorithm RSA are used in the NSLP model without specific preference.
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
Kang, E., Schobbens, P..  2020.  InFoCPS: Integrating Formal Analysis of Cyber-Physical Systems with Energy Prognostics. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—5.
This paper is related to dissemination and exploitation of the InFoCPS PhD research project: Failure of Cyber-Physical Systems (CPS) may cause extensive damage. Safety standards emphasize the use of formal analysis in CPS development processes. Performance degradation assessment and estimation of lifetime of energy storage (electric batteries) are vital in supporting maintenance decisions and guaranteeing CPS reliability. Existing formal analysis techniques mainly focus on specifying energy constraints in simplified manners and checking whether systems operate within given energy bounds. Leading to overlooked energy features that impede development of trustworthy CPS. Prognostics and health management (PHM) estimate energy uncertainty and predict remaining life of systems. We aim to utilize PHM techniques to rigorously model dynamic energy behaviors; resulting models are amenable to formal analysis. This project will increase the degree of maintenance of CPS while (non)-functional requirements are preserved correctly.
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..  2020.  Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
Shukla, M. K., Dubey, A. K., Upadhyay, D., Novikov, B..  2020.  Group Key Management in Cloud for Shared Media Sanitization. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :117—120.
Cloud provides a low maintenance and affordable storage to various applications and users. The data owner allows the cloud users to access the documents placed in the cloud service provider based on the user's access control vector provided to the cloud users by the data owners. In such type of scenarios, the confidentiality of the documents exchanged between the cloud service provider and the users should be maintained. The existing approaches used to provide this facility are not computation and communication efficient for performing key updating in the data owner side and the key recovery in the user side. This paper discusses the key management services provided to the cloud users. Remote key management and client-side key management are two approaches used by cloud servers. This paper also aims to discuss the method for destroying the encryption/decryption group keys for shared data to securing the data after deletion. Crypto Shredding or Crypto Throw technique is deployed for the same.
Wu, J. M.-T., Srivastava, G., Pirouz, M., Lin, J. C.-W..  2020.  A GA-based Data Sanitization for Hiding Sensitive Information with Multi-Thresholds Constraint. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI). :29—34.
In this work, we propose a new concept of multiple support thresholds to sanitize the database for specific sensitive itemsets. The proposed method assigns a stricter threshold to the sensitive itemset for data sanitization. Furthermore, a genetic-algorithm (GA)-based model is involved in the designed algorithm to minimize side effects. In our experimental results, the GA-based PPDM approach is compared with traditional compact GA-based model and results clearly showed that our proposed method can obtain better performance with less computational cost.
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
Saxena, U., Sodhi, J., Singh, Y..  2020.  A Comprehensive Approach for DDoS Attack Detection in Smart Home Network Using Shortest Path Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :392—395.
A Distributed Denial of Service (DDoS) attack is an attack that compromised the bandwidth of the whole network by choking down all the available network resources which are publically available, thus makes access to that resource unavailable. The DDoS attack is more vulnerable than a normal DoS attack because here the sources of attack origin are more than one, so users cannot even estimate how to detect and where to take actions so that attacks can be dissolved. This paper proposed a unique approach for DDoS detection using the shortest path algorithm. This Paper suggests that the remedy that must be taken in order to counter-affect the DDoS attack in a smart home network.
Sumantra, I., Gandhi, S. Indira.  2020.  DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.