Poudel, S., Sun, H., Nikovski, D., Zhang, J..
2020.
Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
Siu, J. Y., Panda, S. Kumar.
2020.
A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
Kang, E., Schobbens, P..
2020.
InFoCPS: Integrating Formal Analysis of Cyber-Physical Systems with Energy Prognostics. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—5.
This paper is related to dissemination and exploitation of the InFoCPS PhD research project: Failure of Cyber-Physical Systems (CPS) may cause extensive damage. Safety standards emphasize the use of formal analysis in CPS development processes. Performance degradation assessment and estimation of lifetime of energy storage (electric batteries) are vital in supporting maintenance decisions and guaranteeing CPS reliability. Existing formal analysis techniques mainly focus on specifying energy constraints in simplified manners and checking whether systems operate within given energy bounds. Leading to overlooked energy features that impede development of trustworthy CPS. Prognostics and health management (PHM) estimate energy uncertainty and predict remaining life of systems. We aim to utilize PHM techniques to rigorously model dynamic energy behaviors; resulting models are amenable to formal analysis. This project will increase the degree of maintenance of CPS while (non)-functional requirements are preserved correctly.
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..
2020.
Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
Shukla, M. K., Dubey, A. K., Upadhyay, D., Novikov, B..
2020.
Group Key Management in Cloud for Shared Media Sanitization. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :117—120.
Cloud provides a low maintenance and affordable storage to various applications and users. The data owner allows the cloud users to access the documents placed in the cloud service provider based on the user's access control vector provided to the cloud users by the data owners. In such type of scenarios, the confidentiality of the documents exchanged between the cloud service provider and the users should be maintained. The existing approaches used to provide this facility are not computation and communication efficient for performing key updating in the data owner side and the key recovery in the user side. This paper discusses the key management services provided to the cloud users. Remote key management and client-side key management are two approaches used by cloud servers. This paper also aims to discuss the method for destroying the encryption/decryption group keys for shared data to securing the data after deletion. Crypto Shredding or Crypto Throw technique is deployed for the same.
Wu, J. M.-T., Srivastava, G., Pirouz, M., Lin, J. C.-W..
2020.
A GA-based Data Sanitization for Hiding Sensitive Information with Multi-Thresholds Constraint. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI). :29—34.
In this work, we propose a new concept of multiple support thresholds to sanitize the database for specific sensitive itemsets. The proposed method assigns a stricter threshold to the sensitive itemset for data sanitization. Furthermore, a genetic-algorithm (GA)-based model is involved in the designed algorithm to minimize side effects. In our experimental results, the GA-based PPDM approach is compared with traditional compact GA-based model and results clearly showed that our proposed method can obtain better performance with less computational cost.
Başkaya, D., Samet, R..
2020.
DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
Saxena, U., Sodhi, J., Singh, Y..
2020.
A Comprehensive Approach for DDoS Attack Detection in Smart Home Network Using Shortest Path Algorithm. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :392—395.
A Distributed Denial of Service (DDoS) attack is an attack that compromised the bandwidth of the whole network by choking down all the available network resources which are publically available, thus makes access to that resource unavailable. The DDoS attack is more vulnerable than a normal DoS attack because here the sources of attack origin are more than one, so users cannot even estimate how to detect and where to take actions so that attacks can be dissolved. This paper proposed a unique approach for DDoS detection using the shortest path algorithm. This Paper suggests that the remedy that must be taken in order to counter-affect the DDoS attack in a smart home network.
Sumantra, I., Gandhi, S. Indira.
2020.
DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Shi, Y., Sagduyu, Y. E., Erpek, T..
2020.
Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.