Visible to the public Biblio

Found 5182 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2021-02-03
Illing, B., Westhoven, M., Gaspers, B., Smets, N., Brüggemann, B., Mathew, T..  2020.  Evaluation of Immersive Teleoperation Systems using Standardized Tasks and Measurements. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :278—285.

Despite advances regarding autonomous functionality for robots, teleoperation remains a means for performing delicate tasks in safety critical contexts like explosive ordnance disposal (EOD) and ambiguous environments. Immersive stereoscopic displays have been proposed and developed in this regard, but bring about their own specific problems, e.g., simulator sickness. This work builds upon standardized test environments to yield reproducible comparisons between different robotic platforms. The focus was placed on testing three optronic systems of differing degrees of immersion: (1) A laptop display showing multiple monoscopic camera views, (2) an off-the-shelf virtual reality headset coupled with a pantilt-based stereoscopic camera, and (3) a so-called Telepresence Unit, providing fast pan, tilt, yaw rotation, stereoscopic view, and spatial audio. Stereoscopic systems yielded significant faster task completion only for the maneuvering task. As expected, they also induced Simulator Sickness among other results. However, the amount of Simulator Sickness varied between both stereoscopic systems. Collected data suggests that a higher degree of immersion combined with careful system design can reduce the to-be-expected increase of Simulator Sickness compared to the monoscopic camera baseline while making the interface subjectively more effective for certain tasks.

Gillen, R. E., Anderson, L. A., Craig, C., Johnson, J., Columbia, A., Anderson, R., Craig, A., Scott, S. L..  2020.  Design and Implementation of Full-Scale Industrial Control System Test Bed for Assessing Cyber-Security Defenses. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :341—346.
In response to the increasing awareness of the Ethernet-based threat surface of industrial control systems (ICS), both the research and commercial communities are responding with ICS-specific security solutions. Unfortunately, many of the properties of ICS environments that contribute to the extent of this threat surface (e.g. age of devices, inability or unwillingness to patch, criticality of the system) similarly prevent the proper testing and evaluation of these security solutions. Production environments are often too fragile to introduce unvetted technology and most organizations lack test environments that are sufficiently consistent with production to yield actionable results. Cost and space requirements prevent the creation of mirrored physical environments leading many to look towards simulation or virtualization. Examples in literature provide various approaches to building ICS test beds, though most of these suffer from a lack of realism due to contrived scenarios, synthetic data and other compromises. In this paper, we provide a design methodology for building highly realistic ICS test beds for validating cybersecurity defenses. We then apply that methodology to the design and building of a specific test bed and describe the results and experimental use cases.
Gao, L., Sun, J., Li, J..  2020.  Security of Networked Control Systems with Incomplete Information Based on Game Theory. 2020 39th Chinese Control Conference (CCC). :6701—6706.

The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.

Rehan, S., Singh, R..  2020.  Industrial and Home Automation, Control, Safety and Security System using Bolt IoT Platform. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :787—793.
This paper describes a system that comprises of control, safety and security subsystem for industries and homes. The entire system is based on the Bolt IoT platform. Using this system, the user can control the devices such as LEDs, speed of the fan or DC motor, monitor the temperature of the premises with an alert sub-system for critical temperatures through SMS and call, monitor the presence of anyone inside the premises with an alert sub-system about any intrusion through SMS and call. If the system is used specifically in any industry then instead of monitoring the temperature any other physical quantity, which is critical for that industry, can be monitored using suitable sensors. In addition, the cloud connectivity is provided to the system using the Bolt IoT module and temperature data is sent to the cloud where using machine-learning algorithm the future temperature is predicted to avoid any accidents in the future.
He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
Chernov, D., Sychugov, A..  2020.  Determining the Hazard Quotient of Destructive Actions of Automated Process Control Systems Information Security Violator. 2020 International Russian Automation Conference (RusAutoCon). :566—570.
The purpose of the work is a formalized description of the method determining numerical expression of the danger from actions potentially implemented by an information security violator. The implementation of such actions may lead to a disruption of the ordered functioning of multilevel distributed automated process control systems, which indicates the importance of developing new adequate solutions for predicting attacks consequences. The analysis of the largest destructive effects on information security systems of critical objects is carried out. The most common methods of obtaining the value of the hazard quotient of information security violators' destructive actions are considered. Based on the known methods for determining the possible damage from attacks implemented by a potential information security violator, a new, previously undetected in open sources method for determining the hazard quotient of destructive actions of an information security violator has been proposed. In order to carry out experimental calculations by the proposed method, the authors developed the required software. The calculations results are presented and indicate the possibility of using the proposed method for modeling threats and information security violators when designing an information security system for automated process control systems.
2021-02-01
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
Han, W., Schulz, H.-J..  2020.  Beyond Trust Building — Calibrating Trust in Visual Analytics. 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). :9–15.
Trust is a fundamental factor in how users engage in interactions with Visual Analytics (VA) systems. While the importance of building trust to this end has been pointed out in research, the aspect that trust can also be misplaced is largely ignored in VA so far. This position paper addresses this aspect by putting trust calibration in focus – i.e., the process of aligning the user’s trust with the actual trustworthiness of the VA system. To this end, we present the trust continuum in the context of VA, dissect important trust issues in both VA systems and users, as well as discuss possible approaches that can build and calibrate trust.
Rutard, F., Sigaud, O., Chetouani, M..  2020.  TIRL: Enriching Actor-Critic RL with non-expert human teachers and a Trust Model. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :604–611.
Reinforcement learning (RL) algorithms have been demonstrated to be very attractive tools to train agents to achieve sequential tasks. However, these algorithms require too many training data to converge to be efficiently applied to physical robots. By using a human teacher, the learning process can be made faster and more robust, but the overall performance heavily depends on the quality and availability of teacher demonstrations or instructions. In particular, when these teaching signals are inadequate, the agent may fail to learn an optimal policy. In this paper, we introduce a trust-based interactive task learning approach. We propose an RL architecture able to learn both from environment rewards and from various sparse teaching signals provided by non-expert teachers, using an actor-critic agent, a human model and a trust model. We evaluate the performance of this architecture on 4 different setups using a maze environment with different simulated teachers and show that the benefits of the trust model.
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
Lee, J., Abe, G., Sato, K., Itoh, M..  2020.  Impacts of System Transparency and System Failure on Driver Trust During Partially Automated Driving. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–3.
The objective of this study is to explore changes of trust by a situation where drivers need to intervene. Trust in automation is a key determinant for appropriate interaction between drivers and the system. System transparency and types of system failure influence shaping trust in a supervisory control. Subjective ratings of trust were collected to examine the impact of two factors: system transparency (Detailed vs. Less) and system failure (by Limits vs. Malfunction) in a driving simulator study in which drivers experienced a partially automated vehicle. We examined trust ratings at three points: before and after driver intervention in the automated vehicle, and after subsequent experience of flawless automated driving. Our result found that system transparency did not have significant impacts on trust change from before to after the intervention. System-malfunction led trust reduction compared to those of before the intervention, whilst system-limits did not influence trust. The subsequent experience recovered decreased trust, in addition, when the system-limit occurred to drivers who have detailed information about the system, trust prompted in spite of the intervention. The present finding has implications for automation design to achieve the appropriate level of trust.
Zhang, Y., Liu, J., Shang, T., Wu, W..  2020.  Quantum Homomorphic Encryption Based on Quantum Obfuscation. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2010–2015.
Homomorphic encryption enables computation on encrypted data while maintaining secrecy. This leads to an important open question whether quantum computation can be delegated and verified in a non-interactive manner or not. In this paper, we affirmatively answer this question by constructing the quantum homomorphic encryption scheme with quantum obfuscation. It takes advantage of the interchangeability of the unitary operator, and exchanges the evaluation operator and the encryption operator by means of equivalent multiplication to complete homomorphic encryption. The correctness of the proposed scheme is proved theoretically. The evaluator does not know the decryption key and does not require a regular interaction with a user. Because of key transmission after quantum obfuscation, the encrypting party and the decrypting party can be different users. The output state has the property of complete mixture, which guarantees the scheme security. Moreover, the security level of the quantum homomorphic encryption scheme depends on quantum obfuscation and encryption operators.
Sendhil, R., Amuthan, A..  2020.  Privacy Preserving Data Aggregation in Fog Computing using Homomorphic Encryption: An Analysis. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
In recent days the attention of the researchers has been grabbed by the advent of fog computing which is found to be a conservatory of cloud computing. The fog computing is found to be more advantageous and it solves mighty issues of the cloud namely higher delay and also no proper mobility awareness and location related awareness are found in the cloud environment. The IoT devices are connected to the fog nodes which support the cloud services to accumulate and process a component of data. The presence of Fog nodes not only reduces the demands of processing data, but it had improved the quality of service in real time scenarios. Nevertheless the fog node endures from challenges of false data injection, privacy violation in IoT devices and violating integrity of data. This paper is going to address the key issues related to homomorphic encryption algorithms which is used by various researchers for providing data integrity and authenticity of the devices with their merits and demerits.
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.
2021-01-28
Sammoud, A., Chalouf, M. A., Hamdi, O., Montavont, N., Bouallegue, A..  2020.  A secure three-factor authentication and biometrics-based key agreement scheme for TMIS with user anonymity. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1916—1921.

E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.

Salib, E. H., Aboutabl, M. S..  2020.  Hands-on Undergraduate Labs on Anonymity Cryptographic Algorithms. 2020 IEEE Frontiers in Education Conference (FIE). :1—9.

This is an innovative practice full paper. In past projects, we have successfully used a private TOR (anonymity network) platform that enabled our students to explore the end-to-end inner workings of the TOR anonymity network through a number of controlled hands-on lab assignments. These have saisfied the needs of curriculum focusing on networking functions and algorithms. To be able to extend the use and application of the private TOR platform into cryptography courses, there is a desperate need to enhance the platform to allow the development of hands-on lab assignments on the cryptographic algorithms and methods utilized in the creation of TOR secure connections and end-to-end circuits for anonymity.In tackling this challenge, and since TOR is open source software, we identify the cryptographic functions called by the TOR algorithms in the process of establishing TLS connections and creating end-to-end TOR circuits as well tearing them down. We instrumented these functions with the appropriate code to log the cryptographic keys dynamically created at all nodes involved in the creation of the end to end circuit between the Client and the exit relay (connected to the target server).We implemented a set of pedagogical lab assignments on a private TOR platform and present them in this paper. Using these assignments, students are able to investigate and validate the cryptographic procedures applied in the establishment of the initial TLS connection, the creation of the first leg of a TOR circuit, as well as extending the circuit through additional relays (at least two relays). More advanced assignments are created to challenge the students to unwrap the traffic sent from the Client to the exit relay at all onion skin layers and compare it with the actual traffic delivered to the target server.

Santos, W., Sousa, G., Prata, P., Ferrão, M. E..  2020.  Data Anonymization: K-anonymity Sensitivity Analysis. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.

These days the digitization process is everywhere, spreading also across central governments and local authorities. It is hoped that, using open government data for scientific research purposes, the public good and social justice might be enhanced. Taking into account the European General Data Protection Regulation recently adopted, the big challenge in Portugal and other European countries, is how to provide the right balance between personal data privacy and data value for research. This work presents a sensitivity study of data anonymization procedure applied to a real open government data available from the Brazilian higher education evaluation system. The ARX k-anonymization algorithm, with and without generalization of some research value variables, was performed. The analysis of the amount of data / information lost and the risk of re-identification suggest that the anonymization process may lead to the under-representation of minorities and sociodemographic disadvantaged groups. It will enable scientists to improve the balance among risk, data usability, and contributions for the public good policies and practices.

Kumar, B. S., Daniya, T., Sathya, N., Cristin, R..  2020.  Investigation on Privacy Preserving using K-Anonymity Techniques. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1—7.

In the current world, day by day the data growth and the investigation about that information increased due to the pervasiveness of computing devices, but people are reluctant to share their information on online portals or surveys fearing safety because sensitive information such as credit card information, medical conditions and other personal information in the wrong hands can mean danger to the society. These days privacy preserving has become a setback for storing data in data repository so for that reason data in the repository should be made undistinguishable, data is encrypted while storing and later decrypted when needed for analysis purpose in data mining. While storing the raw data of the individuals it is important to remove person-identifiable information such as name, employee id. However, the other attributes pertaining to the person should be encrypted so the methodologies used to implement. These methodologies can make data in the repository secure and PPDM task can made easier.

Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.

Segoro, M. B., Putro, P. A. Wibowo.  2020.  Implementation of Two Factor Authentication (2FA) and Hybrid Encryption to Reduce the Impact of Account Theft on Android-Based Instant Messaging (IM) Applications. 2020 International Workshop on Big Data and Information Security (IWBIS). :115—120.

Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.

Siddiquie, K., Shafqat, N., Masood, A., Abbas, H., Shahid, W. b.  2020.  Profiling Vulnerabilities Threatening Dual Persona in Android Framework. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1—6.

Enterprises round the globe have been searching for a way to securely empower AndroidTM devices for work but have spurned away from the Android platform due to ongoing fragmentation and security concerns. Discrepant vulnerabilities have been reported in Android smartphones since Android Lollipop release. Smartphones can be easily hacked by installing a malicious application, visiting an infectious browser, receiving a crafted MMS, interplaying with plug-ins, certificate forging, checksum collisions, inter-process communication (IPC) abuse and much more. To highlight this issue a manual analysis of Android vulnerabilities is performed, by using data available in National Vulnerability Database NVD and Android Vulnerability website. This paper includes the vulnerabilities that risked the dual persona support in Android 5 and above, till Dec 2017. In our security threat analysis, we have identified a comprehensive list of Android vulnerabilities, vulnerable Android versions, manufacturers, and information regarding complete and partial patches released. So far, there is no published research work that systematically presents all the vulnerabilities and vulnerability assessment for dual persona feature of Android's smartphone. The data provided in this paper will open ways to future research and present a better Android security model for dual persona.

Ganji, F., Amir, S., Tajik, S., Forte, D., Seifert, J.-P..  2020.  Pitfalls in Machine Learning-based Adversary Modeling for Hardware Systems. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :514—519.

The concept of the adversary model has been widely applied in the context of cryptography. When designing a cryptographic scheme or protocol, the adversary model plays a crucial role in the formalization of the capabilities and limitations of potential attackers. These models further enable the designer to verify the security of the scheme or protocol under investigation. Although being well established for conventional cryptanalysis attacks, adversary models associated with attackers enjoying the advantages of machine learning techniques have not yet been developed thoroughly. In particular, when it comes to composed hardware, often being security-critical, the lack of such models has become increasingly noticeable in the face of advanced, machine learning-enabled attacks. This paper aims at exploring the adversary models from the machine learning perspective. In this regard, we provide examples of machine learning-based attacks against hardware primitives, e.g., obfuscation schemes and hardware root-of-trust, claimed to be infeasible. We demonstrate that this assumption becomes however invalid as inaccurate adversary models have been considered in the literature.

Seiler, M., Trautmann, H., Kerschke, P..  2020.  Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.

Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.

2021-01-25
Feng, Y., Sun, G., Liu, Z., Wu, C., Zhu, X., Wang, Z., Wang, B..  2020.  Attack Graph Generation and Visualization for Industrial Control Network. 2020 39th Chinese Control Conference (CCC). :7655–7660.
Attack graph is an effective way to analyze the vulnerabilities for industrial control networks. We develop a vulnerability correlation method and a practical visualization technology for industrial control network. First of all, we give a complete attack graph analysis for industrial control network, which focuses on network model and vulnerability context. Particularly, a practical attack graph algorithm is proposed, including preparing environments and vulnerability classification and correlation. Finally, we implement a three-dimensional interactive attack graph visualization tool. The experimental results show validation and verification of the proposed method.
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components