Visible to the public Biblio

Found 1032 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2022-12-06
Verma, Sachin Kumar, Verma, Abhishek, Pandey, Avinash Chandra.  2022.  Addressing DAO Insider Attacks in IPv6-Based Low-Power and Lossy Networks. 2022 IEEE Region 10 Symposium (TENSYMP). :1-6.

Low-Power and Lossy Networks (LLNs) run on resource-constrained devices and play a key role in many Industrial Internet of Things and Cyber-Physical Systems based applications. But, achieving an energy-efficient routing in LLNs is a major challenge nowadays. This challenge is addressed by Routing Protocol for Low-power Lossy Networks (RPL), which is specified in RFC 6550 as a “Proposed Standard” at present. In RPL, a client node uses Destination Advertisement Object (DAO) control messages to pass on the destination information towards the root node. An attacker may exploit the DAO sending mechanism of RPL to perform a DAO Insider attack in LLNs. In this paper, it is shown that an aggressive attacker can drastically degrade the network performance. To address DAO Insider attack, a lightweight defense solution is proposed. The proposed solution uses an early blacklisting strategy to significantly mitigate the attack and restore RPL performance. The proposed solution is implemented and tested on Cooja Simulator.

2022-12-01
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
2022-11-18
Aleksandrov, Mark N., Vasiliev, Victor A., Aleksandrova, Svetlana V..  2021.  Implementation of the Risk-based Approach Methodology in Information Security Management Systems. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :137—139.
Currently, most companies systematically face challenges related to the loss of significant confidential information, including legally significant information, such as personal data of customers. To solve the problem of maintaining the confidentiality, integrity and availability of information, companies are increasingly using the methodology laid down in the basis of the international standard ISO / IEC 27001. Information security risk management is a process of continuous monitoring and systematic analysis of the internal and external environment of the IT environment, associated with the further adoption and implementation of management decisions aimed at reducing the likelihood of an unfavorable result and minimizing possible threats to business caused by the loss of manageability of information that is important for the organization. The article considers the problems and approaches to the development, practical implementation, and methodology of risk management based on the international standard ISO 31000 in the modern information security management system.
2022-11-02
Shubham, Kumar, Venkatesh, Gopalakrishnan, Sachdev, Reijul, Akshi, Jayagopi, Dinesh Babu, Srinivasaraghavan, G..  2021.  Learning a Deep Reinforcement Learning Policy Over the Latent Space of a Pre-trained GAN for Semantic Age Manipulation. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Learning a disentangled representation of the latent space has become one of the most fundamental problems studied in computer vision. Recently, many Generative Adversarial Networks (GANs) have shown promising results in generating high fidelity images. However, studies to understand the semantic layout of the latent space of pre-trained models are still limited. Several works train conditional GANs to generate faces with required semantic attributes. Unfortunately, in these attempts, the generated output is often not as photo-realistic as the unconditional state-of-the-art models. Besides, they also require large computational resources and specific datasets to generate high fidelity images. In our work, we have formulated a Markov Decision Process (MDP) over the latent space of a pre-trained GAN model to learn a conditional policy for semantic manipulation along specific attributes under defined identity bounds. Further, we have defined a semantic age manipulation scheme using a locally linear approximation over the latent space. Results show that our learned policy samples high fidelity images with required age alterations, while preserving the identity of the person.
Costa, Cliona J, Tiwari, Stuti, Bhagat, Krishna, Verlekar, Akash, Kumar, K M Chaman, Aswale, Shailendra.  2021.  Three-Dimensional Reconstruction of Satellite images using Generative Adversarial Networks. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :121–126.
3D reconstruction has piqued the interest of many disciplines, and many researchers have spent the last decade striving to improve on latest automated three-dimensional reconstruction systems. Three Dimensional models can be utilized to tackle a wide range of visualization problems as well as other activities. In this paper, we have implemented a method of Digital Surface Map (DSM) generation from Aerial images using Conditional Generative Adversarial Networks (c-GAN). We have used Seg-net architecture of Convolutional Neural Network (CNN) to segment the aerial images and then the U-net generator of c-GAN generates final DSM. The dataset we used is ISPRS Potsdam-Vaihingen dataset. We also review different stages if 3D reconstruction and how Deep learning is now being widely used to enhance the process of 3D data generation. We provide binary cross entropy loss function graph to demonstrate stability of GAN and CNN. The purpose of our approach is to solve problem of DSM generation using Deep learning techniques. We put forth our method against other latest methods of DSM generation such as Semi-global Matching (SGM) and infer the pros and cons of our approach. Finally, we suggest improvements in our methods that might be useful in increasing the accuracy.
Myakotin, Dmitriy, Varkentin, Vitalii.  2021.  Classification of Network Traffic Using Generative Adversarial Networks. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :519–525.
Currently, the increasing complexity of DDoS attacks makes it difficult for modern security systems to track them. Machine learning techniques are increasingly being used in such systems as they are well established. However, a new problem arose: the creation of informative datasets. Generative adversarial networks can help create large, high-quality datasets for machine learning training. The article discusses the issue of using generative adversarial networks to generate new patterns of network attacks for the purpose of their further use in training.
2022-10-20
Varma, Dheeraj, Mishra, Shikhar, Meenpal, Ankita.  2020.  An Adaptive Image Steganographic Scheme Using Convolutional Neural Network and Dual-Tree Complex Wavelet Transform. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
The technique of concealing a confidential information in a carrier information is known as steganography. When we use digital images as carriers, it is termed as image steganography. The advancements in digital technology and the need for information security have given great significance for image steganographic methods in the area of secured communication. An efficient steganographic system is characterized by a good trade-off between its features such as imperceptibility and capacity. The proposed scheme implements an edge-detection based adaptive steganography with transform domain embedding, offering high imperceptibility and capacity. The scheme employs an adaptive embedding technique to select optimal data-hiding regions in carrier image, using Canny edge detection and a Convolutional Neural Network (CNN). Then, the secret image is embedded in the Dual-Tree Complex Wavelet Transform (DTCWT) coefficients of the selected carrier image blocks, with the help of Singular Value Decomposition (SVD). The analysis of the scheme is performed using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC).
Vishnu, B., Sajeesh, Sandeep R, Namboothiri, Leena Vishnu.  2020.  Enhanced Image Steganography with PVD and Edge Detection. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :949—953.
Steganography is the concept to conceal information and the data by embedding it as secret data into various digital medium in order to achieve higher security. To achieve this, many steganographic algorithms are already proposed. The ability of human eyes as well as invisibility remain the most important and prominent factor for the security and protection. The most commonly used security measure of data hiding within imagesYet it is ineffective against Steganalysis and lacks proper verifications. Thus the proposed system of Image Steganography using PVD (Pixel Value Differentiating) proves to be a better choice. It compresses and embeds data in images at the pixel value difference calculated between two consecutive pixels. To increase the security, another technique called Edge Detection is used along with PVD to embed data at the edges. Edge Detection techniques like Canny algorithm are used to find the edges in an image horizontally as well as vertically. The edge pixels in an image can be used to handle more bits of messages, because more pixel value shifts can be handled by the image edge area.
Mishra, Rajesh K, Vasal, Deepanshu, Vishwanath, Sriram.  2020.  Model-free Reinforcement Learning for Stochastic Stackelberg Security Games. 2020 59th IEEE Conference on Decision and Control (CDC). :348—353.
In this paper, we consider a sequential stochastic Stackelberg game with two players, a leader, and a follower. The follower observes the state of the system privately while the leader does not. Players play Stackelberg equilibrium where the follower plays best response to the leader's strategy. In such a scenario, the leader has the advantage of committing to a policy that maximizes its returns given the knowledge that the follower is going to play the best response to its policy. Such a pair of strategies of both the players is defined as Stackelberg equilibrium of the game. Recently, [1] provided a sequential decomposition algorithm to compute the Stackelberg equilibrium for such games which allow for the computation of Markovian equilibrium policies in linear time as opposed to double exponential, as before. In this paper, we extend that idea to the case when the state update dynamics are not known to the players, to propose an reinforcement learning (RL) algorithm based on Expected Sarsa that learns the Stackelberg equilibrium policy by simulating a model of the underlying Markov decision process (MDP). We use particle filters to estimate the belief update for a common agent that computes the optimal policy based on the information which is common to both the players. We present a security game example to illustrate the policy learned by our algorithm.
Torquato, Matheus, Maciel, Paulo, Vieira, Marco.  2020.  Security and Availability Modeling of VM Migration as Moving Target Defense. 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC). :50—59.
Moving Target Defense (MTD) is a defensive mechanism based on dynamic system reconfiguration to prevent or thwart cyberattacks. In the last years, considerable progress has been made regarding MTD approaches for virtualized environments, and Virtual Machine (VM) migration is the core of most of these approaches. However, VM migration produces system downtime, meaning that each MTD reconfiguration affects system availability. Therefore, a method for a combined evaluation of availability and security is of utmost importance for VM migration-based MTD design. In this paper, we propose a Stochastic Reward Net (SRN) for the probability of attack success and availability evaluation of an MTD based on VM migration scheduling. We study the MTD system under different conditions regarding 1) VM migration scheduling, 2) VM migration failure probability, and 3) attack success rate. Our results highlight the tradeoff between availability and security when applying MTD based on VM migration. The approach and results may provide inputs for designing and evaluating MTD policies based on VM migration.
Kassir, Saadallah, Veciana, Gustavo de, Wang, Nannan, Wang, Xi, Palacharla, Paparao.  2020.  Service Placement for Real-Time Applications: Rate-Adaptation and Load-Balancing at the Network Edge. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :207—215.
Mobile Edge Computing may become a prevalent platform to support applications where mobile devices have limited compute, storage, energy and/or data privacy concerns. In this paper, we study the efficient provisioning and management of compute resources in the Edge-to-Cloud continuum for different types of real-time applications with timeliness requirements depending on application-level update rates and communication/compute delays. We begin by introducing a highly stylized network model allowing us to study the salient features of this problem including its sensitivity to compute vs. communication costs, application requirements, and traffic load variability. We then propose an online decentralized service placement algorithm, based on estimating network delays and adapting application update rates, which achieves high service availability. Our results exhibit how placement can be optimized and how a load-balancing strategy can achieve near-optimal service availability in large networks.
2022-10-16
Van Es, Noah, Van der Plas, Jens, Stiévenart, Quentin, De Roover, Coen.  2020.  MAF: A Framework for Modular Static Analysis of Higher-Order Languages. 2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM). :37–42.
A modular static analysis decomposes a program's analysis into analyses of its parts, or components. An intercomponent analysis instructs an intra-component analysis to analyse each component independently of the others. Additional analyses are scheduled for newly discovered components, and for dependent components that need to account for newly discovered component information. Modular static analyses are scalable, can be tuned to a high precision, and support the analysis of programs that are highly dynamic, featuring e.g., higher-order functions or dynamically allocated processes.In this paper, we present the engineering aspects of MAF, a static analysis framework for implementing modular analyses for higher-order languages. For any such modular analysis, the framework provides a reusable inter-component analysis and it suffices to implement its intra-component analysis. The intracomponent analysis can be composed from several interdependent and reusable Scala traits. This design facilitates changing the analysed language, as well as the analysis precision with minimal effort. We illustrate the use of MAF through its instantiation for several different analyses of Scheme programs.
2022-10-03
Zeitouni, Shaza, Vliegen, Jo, Frassetto, Tommaso, Koch, Dirk, Sadeghi, Ahmad-Reza, Mentens, Nele.  2021.  Trusted Configuration in Cloud FPGAs. 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :233–241.
In this paper we tackle the open paradoxical challenge of FPGA-accelerated cloud computing: On one hand, clients aim to secure their Intellectual Property (IP) by encrypting their configuration bitstreams prior to uploading them to the cloud. On the other hand, cloud service providers disallow the use of encrypted bitstreams to mitigate rogue configurations from damaging or disabling the FPGA. Instead, cloud providers require a verifiable check on the hardware design that is intended to run on a cloud FPGA at the netlist-level before generating the bitstream and loading it onto the FPGA, therefore, contradicting the IP protection requirement of clients. Currently, there exist no practical solution that can adequately address this challenge.We present the first practical solution that, under reasonable trust assumptions, satisfies the IP protection requirement of the client and provides a bitstream sanity check to the cloud provider. Our proof-of-concept implementation uses existing tools and commodity hardware. It is based on a trusted FPGA shell that utilizes less than 1% of the FPGA resources on a Xilinx VCU118 evaluation board, and an Intel SGX machine running the design checks on the client bitstream.
2022-09-30
Terzi, Sofia, Savvaidis, Charalampos, Sersemis, Athanasios, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  Decentralizing Identity Management and Vehicle Rights Delegation through Self-Sovereign Identities and Blockchain. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1217–1223.
With smart vehicles interconnected with multiple systems and other entities, whether they are people or IoT devices, the importance of a digital identity for them has emerged. We present in this paper how a Self-Sovereign Identities combined with blockchain can provide a solution to this end, in order to decentralize the identity management and provide them with capabilities to identify the other entities they interact with. Such entities can be the owners of the vehicles, other drivers and workshops that act as service providers. Two use cases are examined along with the interactions between the participants, to demonstrate how a decentralized identity management solution can take care of the necessary authentication and authorization processes. Finally, we test the system and provide the measurements to prove its feasibility in real-life deployments.
2022-09-09
Vo, Khoa Tan, Nguyen-Thi, Anh-Thu, Nguyen-Hoang, Tu-Anh.  2021.  Building Sustainable Food Supply Chain Management System Based On Hyperledger Fabric Blockchain. 2021 15th International Conference on Advanced Computing and Applications (ACOMP). :9—16.

Quality assurance and food safety are the most problem that the consumers are special care. To solve this problem, the enterprises must improve their food supply chain management system. In addition to tracking and storing orders and deliveries, it also ensures transparency and traceability of food production and transportation. This is a big challenge that the food supply chain system using the client-server model cannot meet with the requirements. Blockchain was first introduced to provide distributed records of digital currency exchanges without reliance on centralized management agencies or financial institutions. Blockchain is a disruptive technology that can improve supply chain related transactions, enable to access data permanently, data security, and provide a distributed database. In this paper, we propose a method to design a food supply chain management system base on Blockchain technology that is capable of bringing consumers’ trust in food traceability as well as providing a favorable supply and transaction environment. Specifically, we design a system architecture that is capable of controlling and tracking the entire food supply chain, including production, processing, transportation, storage, distribution, and retail. We propose the KDTrace system model and the Channel of KDTrace network model. The Smart contract between the organizations participating in the transaction is implemented in the Channel of KDTrace network model. Therefore, our supply chain system can decrease the problem of data explosion, prevent data tampering and disclosure of sensitive information. We have built a prototype based on Hyperledger Fabric Blockchain. Through the prototype, we demonstrated the effectiveness of our method and the suitability of the use cases in a supply chain. Our method that uses Blockchain technology can improve efficiency and security of the food supply chain management system compared with traditional systems, which use a clientserver model.

Vosatka, Jason, Stern, Andrew, Hossain, M.M., Rahman, Fahim, Allen, Jeffery, Allen, Monica, Farahmandi, Farimah, Tehranipoor, Mark.  2020.  Confidence Modeling and Tracking of Recycled Integrated Circuits, Enabled by Blockchain. 2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID). :1—3.
The modern electronics supply chain is a globalized marketplace with the increasing threat of counterfeit integrated circuits (ICs) being installed into mission critical systems. A number of methods for detecting counterfeit ICs exist; however, effective test and evaluation (T&E) methods to assess the confidence of detecting recycled ICs are needed. Additionally, methods for the trustworthy tracking of recycled ICs in the supply chain are also needed. In this work, we propose a novel methodology to address the detection and tracking of recycled ICs at each stage of the electronics supply chain. We present a case study demonstrating our assessment model to calculate the confidence levels of authentic and recycled ICs, and to confidently track these types of ICs throughout the electronics supply chain.
Pranesh, S.A., Kannan V., Vignesh, Viswanathan, N., Vijayalakshmi, M..  2020.  Design and Analysis of Incentive Mechanism for Ethereum-based Supply Chain Management Systems. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Blockchain is becoming more popular because of its decentralized, secured, and transparent nature. Supply chain and its management is indispensable to improve customer services, reduce operating costs and improve financial position of a firm. Integration of blockchain and supply chain is substantial, but it alone is not enough for the sustainability of supply chain systems. The proposed mechanism speaks about the method of rewarding the supply chain parties with incentives so as to improve the security and make the integration of supply chain with blockchain sustainable. The proposed incentive mechanism employs the co-operative approach of game theory where all the supply chain parties show a cooperative behavior of following the blockchain-based supply chain protocols and also this mechanism makes a fair attempt in rewarding the supply chain parties with incentives.
Gonçalves, Luís, Vimieiro, Renato.  2021.  Approaching authorship attribution as a multi-view supervised learning task. 2021 International Joint Conference on Neural Networks (IJCNN). :1—8.
Authorship attribution is the problem of identifying the author of texts based on the author's writing style. It is usually assumed that the writing style contains traits inaccessible to conscious manipulation and can thus be safely used to identify the author of a text. Several style markers have been proposed in the literature, nevertheless, there is still no consensus on which best represent the choices of authors. Here we assume an agnostic viewpoint on the dispute for the best set of features that represents an author's writing style. We rather investigate how different sources of information may unveil different aspects of an author's style, complementing each other to improve the overall process of authorship attribution. For this we model authorship attribution as a multi-view learning task. We assess the effectiveness of our proposal applying it to a set of well-studied corpora. We compare the performance of our proposal to the state-of-the-art approaches for authorship attribution. We thoroughly analyze how the multi-view approach improves on methods that use a single data source. We confirm that our approach improves both in accuracy and consistency of the methods and discuss how these improvements are beneficial for linguists and domain specialists.
Cardaioli, Matteo, Conti, Mauro, Sorbo, Andrea Di, Fabrizio, Enrico, Laudanna, Sonia, Visaggio, Corrado A..  2021.  It’s a Matter of Style: Detecting Social Bots through Writing Style Consistency. 2021 International Conference on Computer Communications and Networks (ICCCN). :1—9.
Social bots are computer algorithms able to produce content and interact with other users on social media autonomously, trying to emulate and possibly influence humans’ behavior. Indeed, bots are largely employed for malicious purposes, like spreading disinformation and conditioning electoral campaigns. Nowadays, bots’ capability of emulating human behaviors has become increasingly sophisticated, making their detection harder. In this paper, we aim at recognizing bot-driven accounts by evaluating the consistency of users’ writing style over time. In particular, we leverage the intuition that while bots compose posts according to fairly deterministic processes, humans are influenced by subjective factors (e.g., emotions) that can alter their writing style. To verify this assumption, by using stylistic consistency indicators, we characterize the writing style of more than 12,000 among bot-driven and human-operated Twitter accounts and find that statistically significant differences can be observed between the different types of users. Thus, we evaluate the effectiveness of different machine learning (ML) algorithms based on stylistic consistency features in discerning between human-operated and bot-driven Twitter accounts and show that the experimented ML algorithms can achieve high performance (i.e., F-measure values up to 98%) in social bot detection tasks.
2022-08-26
Chinnasamy, P., Vinothini, B., Praveena, V., Subaira, A.S., Ben Sujitha, B..  2021.  Providing Resilience on Cloud Computing. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—4.
In Cloud Computing, a wide range of virtual platforms are integrated and offer users a flexible pay-as-you-need service. Compared to conventional computing systems, the provision of an acceptable degree of resilience to cloud services is a daunting challenge due to the complexities of the cloud environment and the need for efficient technology that could sustain cloud advantages over other technologies. For a cloud guest resilience service solution, we provide architectural design, installation specifics, and performance outcomes throughout this article. Virtual Machine Manager (VMM) enables execution statistical test of the virtual machine states to be monitored and avoids to reach faulty states.
Goel, Raman, Vashisht, Sachin, Dhanda, Armaan, Susan, Seba.  2021.  An Empathetic Conversational Agent with Attentional Mechanism. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The number of people suffering from mental health issues like depression and anxiety have spiked enormously in recent times. Conversational agents like chatbots have emerged as an effective way for users to express their feelings and anxious thoughts and in turn obtain some empathetic reply that would relieve their anxiety. In our work, we construct two types of empathetic conversational agent models based on sequence-to-sequence modeling with and without attention mechanism. We implement the attention mechanism proposed by Bahdanau et al. for neural machine translation models. We train our model on the benchmark Facebook Empathetic Dialogue dataset and the BLEU scores are computed. Our empathetic conversational agent model incorporating attention mechanism generates better quality empathetic responses and is better in capturing human feelings and emotions in the conversation.
Zhu, Jessica, Van Brummelen, Jessica.  2021.  Teaching Students About Conversational AI Using Convo, a Conversational Programming Agent. 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). :1–5.
Smart assistants, like Amazon's Alexa or Apple's Siri, have become commonplace in many people's lives, appearing in their phones and homes. Despite their ubiquity, these conversational AI agents still largely remain a mystery to many, in terms of how they work and what they can do. To lower the barrier to entry to understanding and creating these agents for young students, we expanded on Convo, a conversational programming agent that can respond to both voice and text inputs. The previous version of Convo focused on teaching only programming skills, so we created a simple, intuitive user interface for students to use those programming skills to train and create their own conversational AI agents. We also developed a curriculum to teach students about key concepts in AI and conversational AI in particular. We ran a 3-day workshop with 15 participating middle school students. Through the data collected from the pre- and post-workshop surveys as well as a mid-workshop brainstorming session, we found that after the workshop, students tended to think that conversational AI agents were less intelligent than originally perceived, gained confidence in their abilities to build these agents, and learned some key technical concepts about conversational AI as a whole. Based on these results, we are optimistic about CONVO'S ability to teach and empower students to develop conversational AI agents in an intuitive way.
Gisin, Vladimir B., Volkova, Elena S..  2021.  Secure Outsourcing of Fuzzy Linear Regression in Cloud Computing. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). :172—174.
There are problems in which the use of linear regression is not sufficiently justified. In these cases, fuzzy linear regression can be used as a modeling tool. The problem of constructing a fuzzy linear regression can usually be reduced to a linear programming problem. One of the features of the resulting linear programming problem is that it uses a relatively large number of constraints in the form of inequalities with a relatively small number of variables. It is known that the problem of constructing a fuzzy linear regression is reduced to the problem of linear programming. If the user does not have enough computing power the resulting problem can be transferred to the cloud server. Two approaches are used for the confidential transfer of the problem to the server: the approach based on cryptographic encryption, and the transformational approach. The paper describes a protocol based on the transformational approach that allows for secure outsourcing of fuzzy linear regression.
VanYe, Christopher M., Li, Beatrice E., Koch, Andrew T., Luu, Mai N., Adekunle, Rahman O., Moghadasi, Negin, Collier, Zachary A., Polmateer, Thomas L., Barnes, David, Slutzky, David et al..  2021.  Trust and Security of Embedded Smart Devices in Advanced Logistics Systems. 2021 Systems and Information Engineering Design Symposium (SIEDS). :1—6.

This paper addresses security and risk management of hardware and embedded systems across several applications. There are three companies involved in the research. First is an energy technology company that aims to leverage electric- vehicle batteries through vehicle to grid (V2G) services in order to provide energy storage for electric grids. Second is a defense contracting company that provides acquisition support for the DOD's conventional prompt global strike program (CPGS). These systems need protections in their production and supply chains, as well as throughout their system life cycles. Third is a company that deals with trust and security in advanced logistics systems generally. The rise of interconnected devices has led to growth in systems security issues such as privacy, authentication, and secure storage of data. A risk analysis via scenario-based preferences is aided by a literature review and industry experts. The analysis is divided into various sections of Criteria, Initiatives, C-I Assessment, Emergent Conditions (EC), Criteria-Scenario (C-S) relevance and EC Grouping. System success criteria, research initiatives, and risks to the system are compiled. In the C-I Assessment, a rating is assigned to signify the degree to which criteria are addressed by initiatives, including research and development, government programs, industry resources, security countermeasures, education and training, etc. To understand risks of emergent conditions, a list of Potential Scenarios is developed across innovations, environments, missions, populations and workforce behaviors, obsolescence, adversaries, etc. The C-S Relevance rates how the scenarios affect the relevance of the success criteria, including cost, schedule, security, return on investment, and cascading effects. The Emergent Condition Grouping (ECG) collates the emergent conditions with the scenarios. The generated results focus on ranking Initiatives based on their ability to negate the effects of Emergent Conditions, as well as producing a disruption score to compare a Potential Scenario's impacts to the ranking of Initiatives. The results presented in this paper are applicable to the testing and evaluation of security and risk for a variety of embedded smart devices and should be of interest to developers, owners, and operators of critical infrastructure systems.

Ganguli, Mrittika, Ranganath, Sunku, Ravisundar, Subhiksha, Layek, Abhirupa, Ilangovan, Dakshina, Verplanke, Edwin.  2021.  Challenges and Opportunities in Performance Benchmarking of Service Mesh for the Edge. 2021 IEEE International Conference on Edge Computing (EDGE). :78—85.
As Edge deployments move closer towards the end devices, low latency communication among Edge aware applications is one of the key tenants of Edge service offerings. In order to simplify application development, service mesh architectures have emerged as the evolutionary architectural paradigms for taking care of bulk of application communication logic such as health checks, circuit breaking, secure communication, resiliency (among others), thereby decoupling application logic with communication infrastructure. The latency to throughput ratio needs to be measurable for high performant deployments at the Edge. Providing benchmark data for various edge deployments with Bare Metal and virtual machine-based scenarios, this paper digs into architectural complexities of deploying service mesh at edge environment, performance impact across north-south and east-west communications in and out of a service mesh leveraging popular open-source service mesh Istio/Envoy using a simple on-prem Kubernetes cluster. The performance results shared indicate performance impact of Kubernetes network stack with Envoy data plane. Microarchitecture analyses indicate bottlenecks in Linux based stacks from a CPU micro-architecture perspective and quantify the high impact of Linux's Iptables rule matching at scale. We conclude with the challenges in multiple areas of profiling and benchmarking requirement and a call to action for deploying a service mesh, in latency sensitive environments at Edge.