Visible to the public Biblio

Found 1032 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2023-07-11
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
2023-06-30
Bhuyan, Hemanta Kumar, Arun Sai, T., Charan, M., Vignesh Chowdary, K., Brahma, Biswajit.  2022.  Analysis of classification based predicted disease using machine learning and medical things model. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
{Health diseases have been issued seriously harmful in human life due to different dehydrated food and disturbance of working environment in the organization. Precise prediction and diagnosis of disease become a more serious and challenging task for primary deterrence, recognition, and treatment. Thus, based on the above challenges, we proposed the Medical Things (MT) and machine learning models to solve the healthcare problems with appropriate services in disease supervising, forecast, and diagnosis. We developed a prediction framework with machine learning approaches to get different categories of classification for predicted disease. The framework is designed by the fuzzy model with a decision tree to lessen the data complexity. We considered heart disease for experiments and experimental evaluation determined the prediction for categories of classification. The number of decision trees (M) with samples (MS), leaf node (ML), and learning rate (I) is determined as MS=20
2023-06-29
Bide, Pramod, Varun, Patil, Gaurav, Shah, Samveg, Patil, Sakshi.  2022.  Fakequipo: Deep Fake Detection. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–5.

Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.

Bodapati, Nagaeswari, Pooja, N., Varshini, E. Amrutha, Jyothi, R. Naga Sravana.  2022.  Observations on the Theory of Digital Signatures and Cryptographic Hash Functions. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
As the demand for effective information protection grows, security has become the primary concern in protecting such data from attackers. Cryptography is one of the methods for safeguarding such information. It is a method of storing and distributing data in a specific format that can only be read and processed by the intended recipient. It offers a variety of security services like integrity, authentication, confidentiality and non-repudiation, Malicious. Confidentiality service is required for preventing disclosure of information to unauthorized parties. In this paper, there are no ideal hash functions that dwell in digital signature concepts is proved.
2023-06-23
Vogel, Michael, Schuster, Franka, Kopp, Fabian Malte, König, Hartmut.  2022.  Data Volume Reduction for Deep Packet Inspection by Multi-layer Application Determination. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :44–49.
Attack detection in enterprise networks is increasingly faced with large data volumes, in part high data bursts, and heavily fluctuating data flows that often cause arbitrary discarding of data packets in overload situations which can be used by attackers to hide attack activities. Attack detection systems usually configure a comprehensive set of signatures for known vulnerabilities in different operating systems, protocols, and applications. Many of these signatures, however, are not relevant in each context, since certain vulnerabilities have already been eliminated, or the vulnerable applications or operating system versions, respectively, are not installed on the involved systems. In this paper, we present an approach for clustering data flows to assign them to dedicated analysis units that contain only signature sets relevant for the analysis of these flows. We discuss the performance of this clustering and show how it can be used in practice to improve the efficiency of an analysis pipeline.
Konuko, Goluck, Valenzise, Giuseppe, Lathuilière, Stéphane.  2022.  Ultra-Low Bitrate Video Conferencing Using Deep Image Animation. 2022 IEEE International Conference on Image Processing (ICIP). :3515–3520.

In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 60% compared to HEVC.

ISSN: 2381-8549

2023-06-22
Vibhandik, Harshavardhan, Kale, Sudhanshu, Shende, Samiksha, Goudar, Mahesh.  2022.  Medical Assistance Robot with capabilities of Mask Detection with Automatic Sanitization and Social Distancing Detection/ Awareness. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :340–347.
Healthcare sectors such as hospitals, nursing homes, medical offices, and hospice homes encountered several obstacles due to the outbreak of Covid-19. Wearing a mask, social distancing and sanitization are some of the most effective methods that have been proven to be essential to minimize the virus spread. Lately, medical executives have been appointed to monitor the virus spread and encourage the individuals to follow cautious instructions that have been provided to them. To solve the aforementioned challenges, this research study proposes an autonomous medical assistance robot. The proposed autonomous robot is completely service-based, which helps to monitor whether or not people are wearing a mask while entering any health care facility and sanitizes the people after sending a warning to wear a mask by using the image processing and computer vision technique. The robot not only monitors but also promotes social distancing by giving precautionary warnings to the people in healthcare facilities. The robot can assist the health care officials carrying the necessities of the patent while following them for maintaining a touchless environment. With thorough simulative testing and experiments, results have been finally validated.
Ho, Samson, Reddy, Achyut, Venkatesan, Sridhar, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina.  2022.  Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :993–998.
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
ISSN: 2155-7586
Seetharaman, Sanjay, Malaviya, Shubham, Vasu, Rosni, Shukla, Manish, Lodha, Sachin.  2022.  Influence Based Defense Against Data Poisoning Attacks in Online Learning. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :1–6.
Data poisoning is a type of adversarial attack on training data where an attacker manipulates a fraction of data to degrade the performance of machine learning model. There are several known defensive mechanisms for handling offline attacks, however defensive measures for online learning, where data points arrive sequentially, have not garnered similar interest. In this work, we propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup. Our proposed method utilizes an influence function which is a classic technique in robust statistics. Further, we supplement it with the existing data sanitization methods for filtering out some of the poisoned data points. We study the effectiveness of our defense mechanism on multiple datasets and across multiple attack strategies against an online learner.
ISSN: 2155-2509
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-06-09
Vasisht, Soumya, Rahman, Aowabin, Ramachandran, Thiagarajan, Bhattacharya, Arnab, Adetola, Veronica.  2022.  Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems. 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). :298—299.
A simulation-based optimization framework is developed to con-currently design the system and control parameters to meet de-sired performance and operational resiliency objectives. Leveraging system information from both data and models of varying fideli-ties, a rigorous probabilistic approach is employed for co-design experimentation. Significant economic benefits and resilience im-provements are demonstrated using co-design compared to existing sequential designs for cyber-physical systems.
L, Gururaj H, C, Soundarya B, V, Janhavi, H, Lakshmi, MJ, Prassan Kumar.  2022.  Analysis of Cyber Security Attacks using Kali Linux. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). :1—6.
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
2023-05-30
Saranya, K., Valarmathi, Dr. A..  2022.  A Comparative Study on Machine Learning based Cross Layer Security in Internet of Things (IoT). 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :267—273.
The Internet of Things is a developing technology that converts physical objects into virtual objects connected to the internet using wired and wireless network architecture. Use of cross-layer techniques in the internet of things is primarily driven by the high heterogeneity of hardware and software capabilities. Although traditional layered architecture has been effective for a while, cross-layer protocols have the potential to greatly improve a number of wireless network characteristics, including bandwidth and energy usage. Also, one of the main concerns with the internet of things is security, and machine learning (ML) techniques are thought to be the most cuttingedge and viable approach. This has led to a plethora of new research directions for tackling IoT's growing security issues. In the proposed study, a number of cross-layer approaches based on machine learning techniques that have been offered in the past to address issues and challenges brought on by the variety of IoT are in-depth examined. Additionally, the main issues are mentioned and analyzed, including those related to scalability, interoperability, security, privacy, mobility, and energy utilization.
2023-05-19
Vega-Martinez, Valeria, Cooper, Austin, Vera, Brandon, Aljohani, Nader, Bretas, Arturo.  2022.  Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
2023-05-12
Carroll, E. G., Bracamontes, G., Piston, K., James, G. F., Provencher, C. M., Javedani, J., Stygar, W. A., Povilus, A. P., Vonhof, S., Yanagisawa, D. K. et al..  2022.  A New Pulsed Power System for Generating Up To 40t Magnetic Seeds Fields for Cryogenic Inertial Confinement Fusion Experiments on The National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
A new pulse power system is being developed with the goal of generating up to 40T seed magnetic fields for increasing the fusion yield of indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility. This pulser is located outside of the target chamber and delivers a current pulse to the target through a coaxial cable bundle and custom flex-circuit strip-lines integrated into a cryogenic target positioner. At the target, the current passes through a multi-turn solenoid wrapped around the outside of a hohlraum and is insulated with Kapton coating. A 11.33 uF capacitor, charged up to 40 kV and switched by spark-gap, drives up to 40 kA of current before the coil disassembles. A custom Python design optimization code was written to maximize peak magnetic field strength while balancing competing pulser, load and facility constraints. Additionally, using an institutional multi-physics code, ALE3D, simulations that include coil dynamics such as temperature dependent resistance, coil forces and motion, and magnetic diffusion were conducted for detailed analysis of target coils. First experiments are reported as well as comparisons with current modelling efforts.
ISSN: 2576-7208
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
Shubham, Kumar, Venkatesan, Laxmi Narayen Nagarajan, Jayagopi, Dinesh Babu, Tumuluri, Raj.  2022.  Multimodal Embodied Conversational Agents: A discussion of architectures, frameworks and modules for commercial applications. 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). :36–45.
With the recent advancements in automated communication technology, many traditional businesses that rely on face-to-face communication have shifted to online portals. However, these online platforms often lack the personal touch essential for customer service. Research has shown that face-to- face communication is essential for building trust and empathy with customers. A multimodal embodied conversation agent (ECA) can fill this void in commercial applications. Such a platform provides tools to understand the user’s mental state by analyzing their verbal and non-verbal behaviour and allows a human-like avatar to take necessary action based on the context of the conversation and as per social norms. However, the literature to understand the impact of ECA agents on commercial applications is limited because of the issues related to platform and scalability. In our work, we discuss some existing work that tries to solve the issues related to scalability and infrastructure. We also provide an overview of the components required for developing ECAs and their deployment in various applications.
ISSN: 2771-7453
2023-04-28
Khandelwal, Shubh, Sharma, Shreya, Vishnoi, Sarthak, Agarwal, Ms Ashi.  2022.  Store Management Security System. 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). :169–173.
Nowadays big shopping marts are expanding their business all over the world but not all marts are fully protected with the advanced security system. Very often we come across cases where people take the things out of the mart without billing. These marts require some advanced features-based security system for them so that they can run an efficient and no-loss business. The idea we are giving here can not only be implemented in marts to enhance their security but can also be used in various other fields to cope up with the incompetent management system. Several issues of the stores like regular stock updating, placing orders for new products, replacing products that have expired can be solved with the idea we present here. We also plan on making the slow processes of billing and checking out of the mart faster and more efficient that would result in customer satisfaction.
López, Hiram H., Matthews, Gretchen L., Valvo, Daniel.  2022.  Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
2023-04-14
Van Goethem, Tom, Joosen, Wouter.  Submitted.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW).
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
Yadav, Abhay Kumar, Vishwakarma, Virendra Prasad.  2022.  Adoptation of Blockchain of Things(BCOT): Oppurtunities & Challenges. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–5.
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Hossain Faruk, Md Jobair, Tasnim, Masrura, Shahriar, Hossain, Valero, Maria, Rahman, Akond, Wu, Fan.  2022.  Investigating Novel Approaches to Defend Software Supply Chain Attacks. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :283–288.
Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Saurabh, Kumar, Singh, Ayush, Singh, Uphar, Vyas, O.P., Khondoker, Rahamatullah.  2022.  GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1–5.
The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.