Murthy Pedapudi, Srinivasa, Vadlamani, Nagalakshmi.
2022.
A Comprehensive Network Security Management in Virtual Private Network Environment. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1362—1367.
Virtual Private Networks (VPNs) have become a communication medium for accessing information, data exchange and flow of information. Many organizations require Intranet or VPN, for data access, access to servers from computers and sharing different types of data among their offices and users. A secure VPN environment is essential to the organizations to protect the information and their IT infrastructure and their assets. Every organization needs to protect their computer network environment from various malicious cyber threats. This paper presents a comprehensive network security management which includes significant strategies and protective measures during the management of a VPN in an organization. The paper also presents the procedures and necessary counter measures to preserve the security of VPN environment and also discussed few Identified Security Strategies and measures in VPN. It also briefs the Network Security and their Policies Management for implementation by covering security measures in firewall, visualized security profile, role of sandbox for securing network. In addition, a few identified security controls to strengthen the organizational security which are useful in designing a secure, efficient and scalable VPN environment, are also discussed.
Jattke, Patrick, van der Veen, Victor, Frigo, Pietro, Gunter, Stijn, Razavi, Kaveh.
2022.
BLACKSMITH: Scalable Rowhammering in the Frequency Domain. 2022 IEEE Symposium on Security and Privacy (SP). :716—734.
We present the new class of non-uniform Rowhammer access patterns that bypass undocumented, proprietary in-DRAM Target Row Refresh (TRR) while operating in a production setting. We show that these patterns trigger bit flips on all 40 DDR4 DRAM devices in our test pool. We make a key observation that all published Rowhammer access patterns always hammer “aggressor” rows uniformly. While uniform accesses maximize the number of aggressor activations, we find that in-DRAM TRR exploits this behavior to catch aggressor rows and refresh neighboring “victims” before they fail. There is no reason, however, to limit Rowhammer attacks to uniform access patterns: smaller technology nodes make underlying DRAM technologies more vulnerable, and significantly fewer accesses are nowadays required to trigger bit flips, making it interesting to investigate less predictable access patterns. The search space for non-uniform access patterns, however, is tremendous. We design experiments to explore this space with respect to the deployed mitigations, highlighting the importance of the order, regularity, and intensity of accessing aggressor rows in non-uniform access patterns. We show how randomizing parameters in the frequency domain captures these aspects and use this insight in the design of Blacksmith, a scalable Rowhammer fuzzer that generates access patterns that hammer aggressor rows with different phases, frequencies, and amplitudes. Blacksmith finds complex patterns that trigger Rowhammer bit flips on all 40 of our recently purchased DDR4 DIMMs, \$2.6 \textbackslashtimes\$ more than state of the art, and generating on average \$87 \textbackslashtimes\$ more bit flips. We also demonstrate the effectiveness of these patterns on Low Power DDR4X devices. Our extensive analysis using Blacksmith further provides new insights on the properties of currently deployed TRR mitigations. We conclude that after almost a decade of research and deployed in-DRAM mitigations, we are perhaps in a worse situation than when Rowhammer was first discovered.