Biblio
Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.
This research presents a model for assessing information systems cybersecurity maturity level. The main purpose of the model is to provide comprehensive support for information security specialists and auditors in checking information systems security level, checking security policy implementation, and compliance with security standards. The model synthesized based on controls and practices present in ISO 27001 and ISO 27002 and the neural network of direct signal propagation. The methodology described in this paper can also be extended to synthesis a model for different security control sets and, consequently, to verify compliance with another security standard or policy. The resulting model describes a real non-automated process of assessing the maturity of an IS at an acceptable level and it can be recommended to be used in the process of real audit of Information Security Management Systems.