Visible to the public Biblio

Found 958 results

Filters: First Letter Of Last Name is X  [Clear All Filters]
2023-09-20
Zhang, Zhe, Wang, Yaonan, Zhang, Jing, Xiao, Xu.  2022.  Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
2023-09-18
Ding, Zhenquan, Xu, Hui, Guo, Yonghe, Yan, Longchuan, Cui, Lei, Hao, Zhiyu.  2022.  Mal-Bert-GCN: Malware Detection by Combining Bert and GCN. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :175—183.
With the dramatic increase in malicious software, the sophistication and innovation of malware have increased over the years. In particular, the dynamic analysis based on the deep neural network has shown high accuracy in malware detection. However, most of the existing methods only employ the raw API sequence feature, which cannot accurately reflect the actual behavior of malicious programs in detail. The relationship between API calls is critical for detecting suspicious behavior. Therefore, this paper proposes a malware detection method based on the graph neural network. We first connect the API sequences executed by different processes to build a directed process graph. Then, we apply Bert to encode the API sequences of each process into node embedding, which facilitates the semantic execution information inside the processes. Finally, we employ GCN to mine the deep semantic information based on the directed process graph and node embedding. In addition to presenting the design, we have implemented and evaluated our method on 10,000 malware and 10,000 benign software datasets. The results show that the precision and recall of our detection model reach 97.84% and 97.83%, verifying the effectiveness of our proposed method.
Warmsley, Dana, Waagen, Alex, Xu, Jiejun, Liu, Zhining, Tong, Hanghang.  2022.  A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
2023-09-08
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
Chen, Kai, Wu, Hongjun, Xu, Cheng, Ma, Nan, Dai, Songyin, Liu, Hongzhe.  2022.  An Intelligent Vehicle Data Security System based on Blockchain for Smart City. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI). :227–231.
With the development of urbanization, the number of vehicles is gradually increasing, and vehicles are gradually developing in the direction of intelligence. How to ensure that the data of intelligent vehicles is not tampered in the process of transmission to the cloud is the key problem of current research. Therefore, we have established a data security transmission system based on blockchain. First, we collect and filter vehicle data locally, and then use blockchain technology to transmit key data. Through the smart contract, the key data is automatically and accurately transmitted to the surrounding node vehicles, and the vehicles transmit data to each other to form a transaction and spread to the whole network. The node data is verified through the node data consensus protocol of intelligent vehicle data security transmission system, and written into the block to form a blockchain. Finally, the vehicle user can query the transaction record through the vehicle address. The results show that we can safely and accurately transmit and query vehicle data in the blockchain database.
2023-09-07
Xie, Xinjia, Guo, Yunxiao, Yin, Jiangting, Gai, Shun, Long, Han.  2022.  Research on Intellectual Property Protection of Artificial Intelligence Creation in China Based on SVM Kernel Methods. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :230–236.
Artificial intelligence creation comes into fashion and has brought unprecedented challenges to intellectual property law. In order to study the viewpoints of AI creation copyright ownership from professionals in different institutions, taking the papers of AI creation on CNKI from 2016 to 2021, we applied orthogonal design and analysis of variance method to construct the dataset. A kernel-SVM classifier with different kernel methods in addition to some shallow machine learning classifiers are selected in analyzing and predicting the copyright ownership of AI creation. Support vector machine (svm) is widely used in statistics and the performance of SVM method is closely related to the choice of the kernel function. SVM with RBF kernel surpasses the other seven kernel-SVM classifiers and five shallow classifier, although the accuracy provided by all of them was not satisfactory. Various performance metrics such as accuracy, F1-score are used to evaluate the performance of KSVM and other classifiers. The purpose of this study is to explore the overall viewpoints of AI creation copyright ownership, investigate the influence of different features on the final copyright ownership and predict the most likely viewpoint in the future. And it will encourage investors, researchers and promote intellectual property protection in China.
Jin, Bo, Zhou, Zheng, Long, Fei, Xu, Huan, Chen, Shi, Xia, Fan, Wei, Xiaoyan, Zhao, Qingyao.  2022.  Software Supply Chain Security of Power Industry Based on BAS Technology. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :556–561.
The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people's life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
Li, Jinkai, Yuan, Jie, Xiao, Yue.  2022.  A traditional medicine intellectual property protection scheme based on Hyperledger Fabric. 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :1–5.
Due to its decentralized trust mechanism, blockchain is increasingly used as a trust intermediary for multi-party cooperation to reduce the cost and risk of maintaining centralized trust nowadays. And as the requirements for privacy and high throughput, consortium blockchain is widely used in data sharing and business cooperation in practical application scenarios. Nowadays, the protection of traditional medicine has been regarded as human intangible cultural heritage in recent years, but this kind of protection still faces the problem that traditional medicine prescriptions are unsuitable for disclosure and difficult to protect. Hyperledger is a consortium blockchain featuring authorized access, high throughput, and tamper-resistance, making it ideal for privacy protection and information depository in traditional medicine protection. This study proposes a solution for intellectual property protection of traditional medicine by using a blockchain platform to record prescription iterations and clinical trial data. The privacy and confidentiality of Hyperledger can keep intellectual property information safe and private. In addition, the author proposes to invite the Patent Offices and legal institutions to join the blockchain network, maintain users' properties and issue certificates, which can provide a legal basis for rights protection when infringement occurs. Finally, the researchers have built a system corresponding to the scheme and tested the system. The test outcomes of the system can explain the usability of the system. And through the test of system throughput, under low system configuration, it can reach about 200 query operations per second, which can meet the application requirements of relevant organizations and governments.
2023-09-01
Xie, Genlin, Cheng, Guozhen, Liang, Hao, Wang, Qingfeng, He, Benwei.  2022.  Evaluating Software Diversity Based on Gadget Feature Analysis. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1656—1660.
Evaluating the security gains brought by software diversity is one key issue of software diversity research, but the existing software diversity evaluation methods are generally based on conventional code features and are relatively single, which are difficult to accurately reflect the security gains brought by software diversity. To solve these problems, from the perspective of return-oriented programming (ROP) attack, we present a software diversity evaluation method which integrates metrics for the quality and distribution of gadgets. Based on the proposed evaluation method and SpiderMonkey JavaScript engine, we implement a software diversity evaluation system for compiled languages and script languages. Diversity techniques with different granularities are used to test. The evaluation results show that the proposed evaluation method can accurately and comprehensively reflect the security gains brought by software diversity.
He, Benwei, Guo, Yunfei, Liang, Hao, Wang, Qingfeng, Xie, Genlin.  2022.  Research on Defending Code Reuse Attack Based on Binary Rewriting. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1682—1686.
At present, code reuse attacks, such as Return Oriented Programming (ROP), execute attacks through the code of the application itself, bypassing the traditional defense mechanism and seriously threatening the security of computer software. The existing two mainstream defense mechanisms, Address Space Layout Randomization (ASLR), are vulnerable to information disclosure attacks, and Control-Flow Integrity (CFI) will bring high overhead to programs. At the same time, due to the widespread use of software of unknown origin, there is no source code provided or available, so it is not always possible to secure the source code. In this paper, we propose FRCFI, an effective method based on binary rewriting to prevent code reuse attacks. FRCFI first disrupts the program's memory space layout through function shuffling and NOP insertion, then verifies the execution of the control-flow branch instruction ret and indirect call/jmp instructions to ensure that the target address is not modified by attackers. Experiment show shows that FRCFI can effectively defend against code reuse attacks. After randomization, the survival rate of gadgets is only 1.7%, and FRCFI adds on average 6.1% runtime overhead on SPEC CPU2006 benchmark programs.
Ouyang, Chongjun, Xu, Hao, Zang, Xujie, Yang, Hongwen.  2022.  Some Discussions on PHY Security in DF Relay. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :393—397.
Physical layer (PHY) security in decode-and-forward (DF) relay systems is discussed. Based on the types of wiretap links, the secrecy performance of three typical secure DF relay models is analyzed. Different from conventional works in this field, rigorous derivations of the secrecy channel capacity are provided from an information-theoretic perspective. Meanwhile, closed-form expressions are derived to characterize the secrecy outage probability (SOP). For the sake of unveiling more system insights, asymptotic analyses are performed on the SOP for a sufficiently large signal-to-noise ratio (SNR). The analytical results are validated by computer simulations and are in excellent agreement.
2023-08-25
Hu, Yujiao, Jia, Qingmin, Liu, Hui, Zhou, Xiaomao, Lai, Huayao, Xie, Renchao.  2022.  3CL-Net: A Four-in-One Networking Paradigm for 6G System. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :132–136.
The 6G wireless communication networks are being studied to build a powerful networking system with global coverage, enhanced spectral/energy/cost efficiency, better intelligent level and security. This paper presents a four-in-one networking paradigm named 3CL-Net that would broaden and strengthen the capabilities of current networking by introducing ubiquitous computing, caching, and intelligence over the communication connection to build 6G-required capabilities. To evaluate the practicability of 3CL-Net, this paper designs a platform based on the 3CL-Net architecture. The platform adopts leader-followers structure that could support all functions of 3CL-Net, but separate missions of 3CL-Net into two parts. Moreover, this paper has implemented part of functions as a prototype, on which some experiments are carried out. The results demonstrate that 3CL-Net is potential to be a practical and effective network paradigm to meet future requirements, meanwhile, 3CL-Net could motivate designs of related platforms as well.
ISSN: 2831-4395
2023-08-24
Zhang, Ge, Zhang, Zheyu, Sun, Jun, Wang, Zun, Wang, Rui, Wang, Shirui, Xie, Chengyun.  2022.  10 Gigabit industrial thermal data acquisition and storage solution based on software-defined network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :616–619.
With the wide application of Internet technology in the industrial control field, industrial control networks are getting larger and larger, and the industrial data generated by industrial control systems are increasing dramatically, and the performance requirements of the acquisition and storage systems are getting higher and higher. The collection and analysis of industrial equipment work logs and industrial timing data can realize comprehensive management and continuous monitoring of industrial control system work status, as well as intrusion detection and energy efficiency analysis in terms of traffic and data. In the face of increasingly large realtime industrial data, existing log collection systems and timing data gateways, such as packet loss and other phenomena [1], can not be more complete preservation of industrial control network thermal data. The emergence of software-defined networking provides a new solution to realize massive thermal data collection in industrial control networks. This paper proposes a 10-gigabit industrial thermal data acquisition and storage scheme based on software-defined networking, which uses software-defined networking technology to solve the problem of insufficient performance of existing gateways.
Xu, Xinyun, Li, Bing, Wang, Yuhao.  2022.  Exploration of the principle of 6G communication technology and its development prospect. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :100–103.
Nowadays, 5G has been widely used in various fields. People are starting to turn their attention to 6G. Therefore, at the beginning, this paper describes in detail the principle and performance of 6G, and introduces the key technologies of 6G, Cavity technology and THz technology. Based on the high-performance indicators of 6G, we then study the possible application changes brought by 6G, for example, 6G technology will make remote surgery and remote control possible. 6G technology will make remote surgery and remote control possible. 6G will speed up the interconnection of everything, allowing closer and faster connection between cars. Next, virtual reality is discussed. 6G technology will enable better development of virtual reality technology and enhance people's immersive experience. Finally, we present the issues that need to be addressed with 6G technology, such as cybersecurity issues and energy requirements. As well as the higher challenges facing 6G technology, such as connectivity and communication on a larger social plane.
2023-08-04
Xu, Zhifan, Baykal-Gürsoy, Melike.  2022.  Cost-Efficient Network Protection Games Against Uncertain Types of Cyber-Attackers. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
This paper considers network protection games for a heterogeneous network system with N nodes against cyber-attackers of two different types of intentions. The first type tries to maximize damage based on the value of each net-worked node, while the second type only aims at successful infiltration. A defender, by applying defensive resources to networked nodes, can decrease those nodes' vulnerabilities. Meanwhile, the defender needs to balance the cost of using defensive resources and potential security benefits. Existing literature shows that, in a Nash equilibrium, the defender should adopt different resource allocation strategies against different types of attackers. However, it could be difficult for the defender to know the type of incoming cyber-attackers. A Bayesian game is investigated considering the case that the defender is uncertain about the attacker's type. We demonstrate that the Bayesian equilibrium defensive resource allocation strategy is a mixture of the Nash equilibrium strategies from the games against the two types of attackers separately.
2023-08-03
Chen, Wenlong, Wang, Xiaolin, Wang, Xiaoliang, Xu, Ke, Guo, Sushu.  2022.  LRVP: Lightweight Real-Time Verification of Intradomain Forwarding Paths. IEEE Systems Journal. 16:6309–6320.
The correctness of user traffic forwarding paths is an important goal of trusted transmission. Many network security issues are related to it, i.e., denial-of-service attacks, route hijacking, etc. The current path-aware network architecture can effectively overcome this issue through path verification. At present, the main problems of path verification are high communication and high computation overhead. To this aim, this article proposes a lightweight real-time verification mechanism of intradomain forwarding paths in autonomous systems to achieve a path verification architecture with no communication overhead and low computing overhead. The problem situation is that a packet finally reaches the destination, but its forwarding path is inconsistent with the expected path. The expected path refers to the packet forwarding path determined by the interior gateway protocols. If the actual forwarding path is different from the expected one, it is regarded as an incorrect forwarding path. This article focuses on the most typical intradomain routing environment. A few routers are set as the verification routers to block the traffic with incorrect forwarding paths and raise alerts. Experiments prove that this article effectively solves the problem of path verification and the problem of high communication and computing overhead.
Conference Name: IEEE Systems Journal
2023-07-31
Xu, Xuefei.  2022.  Design and Implementation of English Grammar Error Correction System Based on Deep Learning. 2022 3rd International Conference on Information Science and Education (ICISE-IE). :78—81.
At present, our English error correction algorithm is slightly general, the error correction ability is also very limited, and its accuracy rate is also low, so it is very necessary to improve. This article will further explore the problem of syntax error correction, and the corresponding algorithm model will also be proposed. Based on deep learning technology to improve the error correction rate of English grammar, put forward the corresponding solution, put forward the Sep2seq-based English grammar error correction system model, and carry out a series of rectifications to improve its efficiency and accuracy. The basic architecture of TensorFLOW is used to implement the model, and the success of the error correction algorithm model is proved, which brings great improvement and progress to the success of error correction.
Wang, Weiming, Qian, Weifeng, Tao, Kai, Wei, Zitao, Zhang, Shihua, Xia, Yan, Chen, Yong.  2022.  Investigation of Potential FEC Schemes for 800G-ZR Forward Error Correction. 2022 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

With a record 400Gbps 100-piece-FPGA implementation, we investigate performance of the potential FEC schemes for OIF-800GZR. By comparing the power dissipation and correction threshold at 10−15 BER, we proposed the simplified OFEC for the 800G-ZR FEC.

Tao, Kai, Long, Zhijun, Qian, Weifeng, Wei, Zitao, Chen, Xinda, Wang, Weiming, Xia, Yan.  2022.  Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
2023-07-21
Mai, Juanyun, Wang, Minghao, Zheng, Jiayin, Shao, Yanbo, Diao, Zhaoqi, Fu, Xinliang, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu et al..  2022.  MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.  2022.  Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Xin, Wu, Shen, Qingni, Feng, Ke, Xia, Yutang, Wu, Zhonghai, Lin, Zhenghao.  2022.  Personalized User Profiles-based Insider Threat Detection for Distributed File System. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1441—1446.
In recent years, data security incidents caused by insider threats in distributed file systems have attracted the attention of academia and industry. The most common way to detect insider threats is based on user profiles. Through analysis, we realize that based on existing user profiles are not efficient enough, and there are many false positives when a stable user profile has not yet been formed. In this work, we propose personalized user profiles and design an insider threat detection framework, which can intelligently detect insider threats for securing distributed file systems in real-time. To generate personalized user profiles, we come up with a time window-based clustering algorithm and a weighted kernel density estimation algorithm. Compared with non-personalized user profiles, both the Recall and Precision of insider threat detection based on personalized user profiles have been improved, resulting in their harmonic mean F1 increased to 96.52%. Meanwhile, to reduce the false positives of insider threat detection, we put forward operation recommendations based on user similarity to predict new operations that users will produce in the future, which can reduce the false positive rate (FPR). The FPR is reduced to 1.54% and the false positive identification rate (FPIR) is as high as 92.62%. Furthermore, to mitigate the risks caused by inaccurate authorization for users, we present user tags based on operation content and permission. The experimental results show that our proposed framework can detect insider threats more effectively and precisely, with lower FPR and high FPIR.
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.  2022.  An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
2023-07-19
Cheng, Ya Qiao, Xu, Bin, Liu, Kun, Liu, Yue Fan.  2022.  Software design for recording and playback of multi-source heterogeneous data. 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT). :225—228.
The development of marine environment monitoring equipment has been improved by leaps and bounds in recent years. Numerous types of marine environment monitoring equipment have mushroomed with a wide range of high-performance capabilities. However, the existing data recording software cannot meet the demands of real-time and comprehensive data recording in view of the growing data types and the exponential data growth rate generated by various types of marine environment monitoring equipment. Based on the above-mentioned conundrum, this paper proposes a multi-source heterogeneous marine environmental data acquisition and storage method, which can record and replay multi-source heterogeneous data based upon the needs of real-time and accurate performance and also possess good compatibility and expandability.
2023-07-13
Zhang, Zhun, Hao, Qiang, Xu, Dongdong, Wang, Jiqing, Ma, Jinhui, Zhang, Jinlei, Liu, Jiakang, Wang, Xiang.  2022.  Real-Time Instruction Execution Monitoring with Hardware-Assisted Security Monitoring Unit in RISC-V Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :192–196.

Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip's time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.