Visible to the public Biblio

Found 1820 results

Filters: First Letter Of Last Name is Y  [Clear All Filters]
2015-04-30
Peng Yi, Yiguang Hong.  2014.  Distributed continuous-time gradient-based algorithm for constrained optimization. Control Conference (CCC), 2014 33rd Chinese. :1563-1567.

In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.

Yexing Li, Xinye Cai, Zhun Fan, Qingfu Zhang.  2014.  An external archive guided multiobjective evolutionary approach based on decomposition for continuous optimization. Evolutionary Computation (CEC), 2014 IEEE Congress on. :1124-1130.

In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive.

Yanbing Liu, Qingyun Liu, Ping Liu, Jianlong Tan, Li Guo.  2014.  A factor-searching-based multiple string matching algorithm for intrusion detection. Communications (ICC), 2014 IEEE International Conference on. :653-658.

Multiple string matching plays a fundamental role in network intrusion detection systems. Automata-based multiple string matching algorithms like AC, SBDM and SBOM are widely used in practice, but the huge memory usage of automata prevents them from being applied to a large-scale pattern set. Meanwhile, poor cache locality of huge automata degrades the matching speed of algorithms. Here we propose a space-efficient multiple string matching algorithm BVM, which makes use of bit-vector and succinct hash table to replace the automata used in factor-searching-based algorithms. Space complexity of the proposed algorithm is O(rm2 + ΣpϵP |p|), that is more space-efficient than the classic automata-based algorithms. Experiments on datasets including Snort, ClamAV, URL blacklist and synthetic rules show that the proposed algorithm significantly reduces memory usage and still runs at a fast matching speed. Above all, BVM costs less than 0.75% of the memory usage of AC, and is capable of matching millions of patterns efficiently.

Yan-Xiao Liu.  2014.  Efficient t-cheater identifiable (k, n) secret-sharing scheme for t #x02A7D; [((k - 2)/2)]. Information Security, IET. 8:37-41.

In Eurocrypt 2011, Obana proposed a (k, n) secret-sharing scheme that can identify up to ⌊((k− 2)/2)⌋ cheaters. The number of cheaters that this scheme can identify meets its upper bound. When the number of cheaters t satisfies t≤ ⌊((k− 1)/3)⌋, this scheme is extremely efficient since the size of share |Vi| can be written as |Vi| = |S|/ɛ, which almost meets its lower bound, where |S| denotes the size of secret and ε denotes the successful cheating probability; when the number of cheaters t is close to ⌊ ((k− 2)/2)⌋, the size of share is upper bounded by |Vi| = (n·(t + 1) · 2 |S|)/ɛ. A new (k, n) secret-sharing scheme capable of identifying ⌊((k − 2)/2)⌋ cheaters is presented in this study. Considering the general case that k shareholders are involved in secret reconstruction, the size of share of the proposed scheme is |Vi| = (2 |S| )/ɛ, which is independent of the parameters t and n. On the other hand, the size of share in Obana’s scheme can be rewritten as |Vi | = (n · (t + 1) · 2 |S|)/ɛ under the same condition. With respect to the size of share, the proposed scheme is more efficient than previous one when the number of cheaters t is close to ⌊((k− 2)/2)⌋.

Yilin Mo, Sinopoli, B..  2015.  Secure Estimation in the Presence of Integrity Attacks. Automatic Control, IEEE Transactions on. 60:1145-1151.

We consider the estimation of a scalar state based on m measurements that can be potentially manipulated by an adversary. The attacker is assumed to have full knowledge about the true value of the state to be estimated and about the value of all the measurements. However, the attacker has limited resources and can only manipulate up to l of the m measurements. The problem is formulated as a minimax optimization, where one seeks to construct an optimal estimator that minimizes the “worst-case” expected cost against all possible manipulations by the attacker. We show that if the attacker can manipulate at least half the measurements (l ≥ m/2), then the optimal worst-case estimator should ignore all measurements and be based solely on the a-priori information. We provide the explicit form of the optimal estimator when the attacker can manipulate less than half the measurements (l <; m/2), which is based on (m2l) local estimators. We further prove that such an estimator can be reduced into simpler forms for two special cases, i.e., either the estimator is symmetric and monotone or m = 2l + 1. Finally we apply the proposed methodology in the case of Gaussian measurements.

Ben Othman, S., Trad, A., Youssef, H..  2014.  Security architecture for at-home medical care using Wireless Sensor Network. Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International. :304-309.

Distributed wireless sensor network technologies have become one of the major research areas in healthcare industries due to rapid maturity in improving the quality of life. Medical Wireless Sensor Network (MWSN) via continuous monitoring of vital health parameters over a long period of time can enable physicians to make more accurate diagnosis and provide better treatment. The MWSNs provide the options for flexibilities and cost saving to patients and healthcare industries. Medical data sensors on patients produce an increasingly large volume of increasingly diverse real-time data. The transmission of this data through hospital wireless networks becomes a crucial problem, because the health information of an individual is highly sensitive. It must be kept private and secure. In this paper, we propose a security model to protect the transfer of medical data in hospitals using MWSNs. We propose Compressed Sensing + Encryption as a strategy to achieve low-energy secure data transmission in sensor networks.

Yang, J.-S., Chang, J.-M., Pai, K.-J., Chan, H.-C..  2015.  Parallel Construction of Independent Spanning Trees on Enhanced Hypercubes. Parallel and Distributed Systems, IEEE Transactions on. PP:1-1.

The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance, bandwidth and security. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. In this paper, we give an algorithm to construct ISTs on enhanced hypercubes Qn,k, which contain folded hypercubes as a subclass. Moreover, we show that these ISTs are near optimal for heights and path lengths. Let D(Qn,k) denote the diameter of Qn,k. If n - k is odd or n - k ∈ {2; n}, we show that all the heights of ISTs are equal to D(Qn,k) + 1, and thus are optimal. Otherwise, we show that each path from a node to the root in a spanning tree has length at most D(Qn,k) + 2. In particular, no more than 2.15 percent of nodes have the maximum path length. As a by-product, we improve the upper bound of wide diameter (respectively, fault diameter) of Qn,k from these path lengths.

Yufei Gu, Yangchun Fu, Prakash, A., Zhiqiang Lin, Heng Yin.  2014.  Multi-Aspect, Robust, and Memory Exclusive Guest OS Fingerprinting. Cloud Computing, IEEE Transactions on. 2:380-394.

Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-SOMMELIER+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-SOMMELIER+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-SOMMELIER+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels.

Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.

Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. Control of Network Systems, IEEE Transactions on. 1:370-379.

By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.

Manandhar, K., Xiaojun Cao, Fei Hu, Yao Liu.  2014.  Combating False Data Injection Attacks in Smart Grid using Kalman Filter. Computing, Networking and Communications (ICNC), 2014 International Conference on. :16-20.


The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.
 

2015-04-07
Yufan Huang, Xiaofan He, Huaiyu Dai.  2015.  Poster: Systematization of Metrics in Intrusion Detection Systems. ACM Proc. Of the Symposium and Bootcamp on the Science of Security (HotSoS), University of Illinois at Urbana-Champaign, IL.
2015-04-02
Yufan Huang, Xiaofan He, Huaiyu Dai.  2015.  Poster: Systematization of Metrics in Intrusion Detection Systems. ACM Proc. Of the Symposium and Bootcamp on the Science of Security (HotSoS), University of Illinois at Urbana-Champaign, IL.
2015-01-13
Dong Jin, Illinois Institute of Technology, Yi Ning, Illinois Institute of Technology.  2014.  Securing Industrial Control Systems with a Simulation-based Verification System. ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

Today’s quality of life is highly dependent on the successful operation of many large-scale industrial control systems. To enhance their protection against cyber-attacks and operational errors, we develop a simulation-based verification framework with cross-layer verification techniques that allow comprehensive analysis of the entire ICS-specific stack, including application, protocol, and network layers.

Work in progress paper.

2014-10-24
Yu, Tingting, Srisa-an, Witawas, Rothermel, Gregg.  2014.  SimRT: An Automated Framework to Support Regression Testing for Data Races. Proceedings of the 36th International Conference on Software Engineering. :48–59.

Concurrent programs are prone to various classes of difficult-to-detect faults, of which data races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness of approaches for testing for data races by employing race detection techniques, but to date, no work has considered cost-effective approaches for re-testing for races as programs evolve. In this paper we present SimRT, an automated regression testing framework for use in detecting races introduced by code modifications. SimRT employs a regression test selection technique, focused on sets of program elements related to race detection, to reduce the number of test cases that must be run on a changed program to detect races that occur due to code modifications, and it employs a test case prioritization technique to improve the rate at which such races are detected. Our empirical study of SimRT reveals that it is more efficient and effective for revealing races than other approaches, and that its constituent test selection and prioritization components each contribute to its performance.

2014-09-26
Yajin Zhou, Xuxian Jiang.  2012.  Dissecting Android Malware: Characterization and Evolution. Security and Privacy (SP), 2012 IEEE Symposium on. :95-109.

The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.

2014-09-17
Dora, Robert A., Schalk, Patrick D., McCarthy, John E., Young, Scott A..  2013.  Remote suspect identification and the impact of demographic features on keystroke dynamics. Proc. SPIE. 8757:87570B-87570B-14.
This paper describes the research, development, and analysis performed during the Remote Suspect Identification (RSID) effort. The effort produced a keystroke dynamics sensor capable of authenticating, continuously verifying, and identifying masquerading users with equal error rates (EER) of approximately 0.054, 0.050, and 0.069, respectively. This sensor employs 11 distinct algorithms, each using between one and five keystroke features, that are fused (across features and algorithms) using a weighted majority ballot algorithm to produce rapid and accurate measurements. The RSID sensor operates discretely, quickly (using few keystrokes), and requires no additional hardware. The researchers also analyzed the difference in sensor performance across 10 demographic features using a keystroke dynamics dataset consisting of data from over 2,200 subjects. This analysis indicated that there are significant and discernible differences across age groups, ethnicities, language, handedness, height, occupation, sex, typing frequency, and typing style.
Chakraborty, Arpan, Harrison, Brent, Yang, Pu, Roberts, David, St. Amant, Robert.  2014.  Exploring Key-level Analytics for Computational Modeling of Typing Behavior. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :34:1–34:2.

Typing is a human activity that can be affected by a number of situational and task-specific factors. Changes in typing behavior resulting from the manipulation of such factors can be predictably observed through key-level input analytics. Here we present a study designed to explore these relationships. Participants play a typing game in which letter composition, word length and number of words appearing together are varied across levels. Inter-keystroke timings and other higher order statistics (such as bursts and pauses), as well as typing strategies, are analyzed from game logs to find the best set of metrics that quantify the effect that different experimental factors have on observable metrics. Beyond task-specific factors, we also study the effects of habituation by recording changes in performance with practice. Currently a work in progress, this research aims at developing a predictive model of human typing. We believe this insight can lead to the development of novel security proofs for interactive systems that can be deployed on existing infrastructure with minimal overhead. Possible applications of such predictive capabilities include anomalous behavior detection, authentication using typing signatures, bot detection using word challenges etc.

Yang, Wei, Xiao, Xusheng, Pandita, Rahul, Enck, William, Xie, Tao.  2014.  Improving Mobile Application Security via Bridging User Expectations and Application Behaviors. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :32:1–32:2.

To keep malware out of mobile application markets, existing techniques analyze the security aspects of application behaviors and summarize patterns of these security aspects to determine what applications do. However, user expectations (reflected via user perception in combination with user judgment) are often not incorporated into such analysis to determine whether application behaviors are within user expectations. This poster presents our recent work on bridging the semantic gap between user perceptions of the application behaviors and the actual application behaviors.

Yu, Xianqing, Ning, Peng, Vouk, Mladen A..  2014.  Securing Hadoop in Cloud. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :26:1–26:2.

Hadoop is a map-reduce implementation that rapidly processes data in parallel. Cloud provides reliability, flexibility, scalability, elasticity and cost saving to customers. Moving Hadoop into Cloud can be beneficial to Hadoop users. However, Hadoop has two vulnerabilities that can dramatically impact its security in a Cloud. The vulnerabilities are its overloaded authentication key, and the lack of fine-grained access control at the data access level. We propose and develop a security enhancement for Cloud-based Hadoop.