Visible to the public Biblio

Found 1820 results

Filters: First Letter Of Last Name is Y  [Clear All Filters]
2015-05-06
Nower, N., Yasuo Tan, Lim, A.O..  2014.  Efficient Temporal and Spatial Data Recovery Scheme for Stochastic and Incomplete Feedback Data of Cyber-physical Systems. Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on. :192-197.

Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.
 

Yuankai Chen, Xuan Zeng, Hai Zhou.  2014.  Recovery-based resilient latency-insensitive systems. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-6.

As the interconnect delay is becoming a larger fraction of the clock cycle time, the conventional global stalling mechanism, which is used to correct error in general synchronous circuits, would be no longer feasible because of the expensive timing cost for the stalling signal to travel across the circuit. In this paper, we propose recovery-based resilient latency-insensitive systems (RLISs) that efficiently integrate error-recovery techniques with latency-insensitive design to replace the global stalling. We first demonstrate a baseline RLIS as the motivation of our work that uses additional output buffer which guarantees that only correct data can enter the output channel. However this baseline RLIS suffers from performance degradations even when errors do not occur. We propose a novel improved RLIS that allows erroneous data to propagate in the system. Equipped with improved queues that prevent accumulation of erroneous data, the improved RLIS retains the system performance. We provide theoretical study that analyzes the impact of errors on system performance and the queue sizing problem. We also theoretically prove that the improved RLIS performs no worse than the global stalling mechanism. Experimental results show that the improved RLIS has 40.3% and even 3.1% throughput improvements compared to the baseline RLIS and the infeasible global stalling mechanism respectively, with less than 10% hardware overhead.
 

Yunfeng Zhu, Lee, P.P.C., Yinlong Xu, Yuchong Hu, Liping Xiang.  2014.  On the Speedup of Recovery in Large-Scale Erasure-Coded Storage Systems. Parallel and Distributed Systems, IEEE Transactions on. 25:1830-1840.

Modern storage systems stripe redundant data across multiple nodes to provide availability guarantees against node failures. One form of data redundancy is based on XOR-based erasure codes, which use only XOR operations for encoding and decoding. In addition to tolerating failures, a storage system must also provide fast failure recovery to reduce the window of vulnerability. This work addresses the problem of speeding up the recovery of a single-node failure for general XOR-based erasure codes. We propose a replace recovery algorithm, which uses a hill-climbing technique to search for a fast recovery solution, such that the solution search can be completed within a short time period. We further extend the algorithm to adapt to the scenario where nodes have heterogeneous capabilities (e.g., processing power and transmission bandwidth). We implement our replace recovery algorithm atop a parallelized architecture to demonstrate its feasibility. We conduct experiments on a networked storage system testbed, and show that our replace recovery algorithm uses less recovery time than the conventional recovery approach.
 

Silei Xu, Runhui Li, Lee, P.P.C., Yunfeng Zhu, Liping Xiang, Yinlong Xu, Lui, J.C.S..  2014.  Single Disk Failure Recovery for X-Code-Based Parallel Storage Systems. Computers, IEEE Transactions on. 63:995-1007.

In modern parallel storage systems (e.g., cloud storage and data centers), it is important to provide data availability guarantees against disk (or storage node) failures via redundancy coding schemes. One coding scheme is X-code, which is double-fault tolerant while achieving the optimal update complexity. When a disk/node fails, recovery must be carried out to reduce the possibility of data unavailability. We propose an X-code-based optimal recovery scheme called minimum-disk-read-recovery (MDRR), which minimizes the number of disk reads for single-disk failure recovery. We make several contributions. First, we show that MDRR provides optimal single-disk failure recovery and reduces about 25 percent of disk reads compared to the conventional recovery approach. Second, we prove that any optimal recovery scheme for X-code cannot balance disk reads among different disks within a single stripe in general cases. Third, we propose an efficient logical encoding scheme that issues balanced disk read in a group of stripes for any recovery algorithm (including the MDRR scheme). Finally, we implement our proposed recovery schemes and conduct extensive testbed experiments in a networked storage system prototype. Experiments indicate that MDRR reduces around 20 percent of recovery time of the conventional approach, showing that our theoretical findings are applicable in practice.

Zhuo Hao, Yunlong Mao, Sheng Zhong, Li, L.E., Haifan Yao, Nenghai Yu.  2014.  Toward Wireless Security without Computational Assumptions #x2014;Oblivious Transfer Based on Wireless Channel Characteristics. Computers, IEEE Transactions on. 63:1580-1593.

Wireless security has been an active research area since the last decade. A lot of studies of wireless security use cryptographic tools, but traditional cryptographic tools are normally based on computational assumptions, which may turn out to be invalid in the future. Consequently, it is very desirable to build cryptographic tools that do not rely on computational assumptions. In this paper, we focus on a crucial cryptographic tool, namely 1-out-of-2 oblivious transfer. This tool plays a central role in cryptography because we can build a cryptographic protocol for any polynomial-time computable function using this tool. We present a novel 1-out-of-2 oblivious transfer protocol based on wireless channel characteristics, which does not rely on any computational assumption. We also illustrate the potential broad applications of this protocol by giving two applications, one on private communications and the other on privacy preserving password verification. We have fully implemented this protocol on wireless devices and conducted experiments in real environments to evaluate the protocol. Our experimental results demonstrate that it has reasonable efficiency.
 

Rui Zhou, Rong Min, Qi Yu, Chanjuan Li, Yong Sheng, Qingguo Zhou, Xuan Wang, Kuan-Ching Li.  2014.  Formal Verification of Fault-Tolerant and Recovery Mechanisms for Safe Node Sequence Protocol. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :813-820.

Fault-tolerance has huge impact on embedded safety-critical systems. As technology that assists to the development of such improvement, Safe Node Sequence Protocol (SNSP) is designed to make part of such impact. In this paper, we present a mechanism for fault-tolerance and recovery based on the Safe Node Sequence Protocol (SNSP) to strengthen the system robustness, from which the correctness of a fault-tolerant prototype system is analyzed and verified. In order to verify the correctness of more than thirty failure modes, we have partitioned the complete protocol state machine into several subsystems, followed to the injection of corresponding fault classes into dedicated independent models. Experiments demonstrate that this method effectively reduces the size of overall state space, and verification results indicate that the protocol is able to recover from the fault model in a fault-tolerant system and continue to operate as errors occur.
 

Xin Xia, Yang Feng, Lo, D., Zhenyu Chen, Xinyu Wang.  2014.  Towards more accurate multi-label software behavior learning. Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on. :134-143.

In a modern software system, when a program fails, a crash report which contains an execution trace would be sent to the software vendor for diagnosis. A crash report which corresponds to a failure could be caused by multiple types of faults simultaneously. Many large companies such as Baidu organize a team to analyze these failures, and classify them into multiple labels (i.e., multiple types of faults). However, it would be time-consuming and difficult for developers to manually analyze these failures and come out with appropriate fault labels. In this paper, we automatically classify a failure into multiple types of faults, using a composite algorithm named MLL-GA, which combines various multi-label learning algorithms by leveraging genetic algorithm (GA). To evaluate the effectiveness of MLL-GA, we perform experiments on 6 open source programs and show that MLL-GA could achieve average F-measures of 0.6078 to 0.8665. We also compare our algorithm with Ml.KNN and show that on average across the 6 datasets, MLL-GA improves the average F-measure of MI.KNN by 14.43%.
 

Kebin Liu, Qiang Ma, Wei Gong, Xin Miao, Yunhao Liu.  2014.  Self-Diagnosis for Detecting System Failures in Large-Scale Wireless Sensor Networks. Wireless Communications, IEEE Transactions on. 13:5535-5545.

Existing approaches to diagnosing sensor networks are generally sink based, which rely on actively pulling state information from sensor nodes so as to conduct centralized analysis. First, sink-based tools incur huge communication overhead to the traffic-sensitive sensor networks. Second, due to the unreliable wireless communications, sink often obtains incomplete and suspicious information, leading to inaccurate judgments. Even worse, it is always more difficult to obtain state information from problematic or critical regions. To address the given issues, we present a novel self-diagnosis approach, which encourages each single sensor to join the fault decision process. We design a series of fault detectors through which multiple nodes can cooperate with each other in a diagnosis task. Fault detectors encode the diagnosis process to state transitions. Each sensor can participate in the diagnosis by transiting the detector's current state to a new state based on local evidences and then passing the detector to other nodes. Having sufficient evidences, the fault detector achieves the Accept state and outputs a final diagnosis report. We examine the performance of our self-diagnosis tool called TinyD2 on a 100-node indoor testbed and conduct field studies in the GreenOrbs system, which is an operational sensor network with 330 nodes outdoor.
 

Gang Han, Haibo Zeng, Yaping Li, Wenhua Dou.  2014.  SAFE: Security-Aware FlexRay Scheduling Engine. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-4.

In this paper, we propose SAFE (Security Aware FlexRay scheduling Engine), to provide a problem definition and a design framework for FlexRay static segment schedule to address the new challenge on security. From a high level specification of the application, the architecture and communication middleware are synthesized to satisfy security requirements, in addition to extensibility, costs, and end-to-end latencies. The proposed design process is applied to two industrial case studies consisting of a set of active safety functions and an X-by-wire system respectively.

Young Sil Lee, Alasaarela, E., Hoonjae Lee.  2014.  Secure key management scheme based on ECC algorithm for patient's medical information in healthcare system. Information Networking (ICOIN), 2014 International Conference on. :453-457.

Recent advances in Wireless Sensor Networks have given rise to many application areas in healthcare such as the new field of Wireless Body Area Networks. The health status of humans can be tracked and monitored using wearable and non-wearable sensor devices. Security in WBAN is very important to guarantee and protect the patient's personal sensitive data and establishing secure communications between BAN sensors and external users is key to addressing prevalent security and privacy concerns. In this paper, we propose secure and efficient key management scheme based on ECC algorithm to protect patient's medical information in healthcare system. Our scheme divided into three phases as setup, registration, verification and key exchange. And we use the identification code which is the SIM card number on a patient's smart phone with the private key generated by the legal use instead of the third party. Also to prevent the replay attack, we use counter number at every process of authenticated message exchange to resist.

Ying Zhang, Ji Pengfei.  2014.  An efficient and hybrid key management for heterogeneous wireless sensor networks. Control and Decision Conference (2014 CCDC), The 26th Chinese. :1881-1885.

Key management is the core to ensure the communication security of wireless sensor network. How to establish efficient key management in wireless sensor networks (WSN) is a challenging problem for the constrained energy, memory, and computational capabilities of the sensor nodes. Previous research on sensor network security mainly considers homogeneous sensor networks with symmetric key cryptography. Recent researches have shown that using asymmetric key cryptography in heterogeneous sensor networks (HSN) can improve network performance, such as connectivity, resilience, etc. Considering the advantages and disadvantages of symmetric key cryptography and asymmetric key cryptography, the paper propose an efficient and hybrid key management method for heterogeneous wireless sensor network, cluster heads and base stations use public key encryption method based on elliptic curve cryptography (ECC), while using symmetric encryption method between adjacent nodes in the cluster. The analysis and simulation results show that the proposed key management method can provide better security, prefect scalability and connectivity with saving on storage space.

Ching-Kun Chen, Chun-Liang Lin, Shyan-Lung Lin, Yen-Ming Chiu, Cheng-Tang Chiang.  2014.  A Chaotic Theorectical Approach to ECG-Based Identity Recognition [Application Notes]. Computational Intelligence Magazine, IEEE. 9:53-63.

Sophisticated technologies realized from applying the idea of biometric identification are increasingly applied in the entrance security management system, private document protection, and security access control. Common biometric identification involves voice, attitude, keystroke, signature, iris, face, palm or finger prints, etc. Still, there are novel identification technologies based on the individual's biometric features under development [1-4].

Zhongming Jin, Cheng Li, Yue Lin, Deng Cai.  2014.  Density Sensitive Hashing. Cybernetics, IEEE Transactions on. 44:1362-1371.

Nearest neighbor search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, for example, locality sensitive hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbor search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called density sensitive hashing (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.

Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, Chao, H.J..  2014.  High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables. Networking, IEEE/ACM Transactions on. 22:982-995.

The emergence of new network applications, such as the network intrusion detection system and packet-level accounting, requires packet classification to report all matched rules instead of only the best matched rule. Although several schemes have been proposed recently to address the multimatch packet classification problem, most of them require either huge memory or expensive ternary content addressable memory (TCAM) to store the intermediate data structure, or they suffer from steep performance degradation under certain types of classifiers. In this paper, we decompose the operation of multimatch packet classification from the complicated multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstage parallel access to hash tables. To exploit further intrastage parallelism, two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-conserving hash tables. To avoid collisions involved in hash table lookup, a hybrid perfect hash table construction scheme is proposed. Extensive simulation using realistic classifiers and traffic traces shows that the proposed pipeline architecture outperforms HyperCuts and B2PC schemes in classification speed by at least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 Gb/s using perfect hash tables.

Jingkuan Song, Yi Yang, Xuelong Li, Zi Huang, Yang Yang.  2014.  Robust Hashing With Local Models for Approximate Similarity Search. Cybernetics, IEEE Transactions on. 44:1225-1236.

Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing ℓ2,1-norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.
 

Yakut, S., Ozer, A.B..  2014.  HMAC based one t #x0131;me password generator. Signal Processing and Communications Applications Conference (SIU), 2014 22nd. :1563-1566.

One Time Password which is fixed length strings to perform authentication in electronic media is used as a one-time. In this paper, One Time Password production methods which based on hash functions were investigated. Keccak digest algorithm was used for the production of One Time Password. This algorithm has been selected as the latest standards for hash algorithm in October 2012 by National Instute of Standards and Technology. This algorithm is preferred because it is faster and safer than the others. One Time Password production methods based on hash functions is called Hashing-Based Message Authentication Code structure. In these structures, the key value is using with the hash function to generate the Hashing-Based Message Authentication Code value. Produced One Time Password value is based on the This value. In this application, the length of the value One Time Password was the eight characters to be useful in practice.
 

Yier Jin, Sullivan, D..  2014.  Real-time trust evaluation in integrated circuits. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-6.

The use of side-channel measurements and fingerprinting, in conjunction with statistical analysis, has proven to be the most effective method for accurately detecting hardware Trojans in fabricated integrated circuits. However, these post-fabrication trust evaluation methods overlook the capabilities of advanced design skills that attackers can use in designing sophisticated Trojans. To this end, we have designed a Trojan using power-gating techniques and demonstrate that it can be masked from advanced side-channel fingerprinting detection while dormant. We then propose a real-time trust evaluation framework that continuously monitors the on-board global power consumption to monitor chip trustworthiness. The measurements obtained corroborate our frameworks effectiveness for detecting Trojans. Finally, the results presented are experimentally verified by performing measurements on fabricated Trojan-free and Trojan-infected variants of a reconfigurable linear feedback shift register (LFSR) array.

Yoshimizu, N..  2014.  Hardware trojan detection by symmetry breaking in path delays. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :107-111.

This paper discusses the detection of hardware Trojans (HTs) by their breaking of symmetries within integrated circuits (ICs), as measured by path delays. Typically, path delay or side channel methods rely on comparisons to a golden, or trusted, sample. However, golden standards are affected by inter-and intra-die variations which limit the confidence in such comparisons. Symmetry is a way to detect modifications to an IC with increased confidence by confirming subcircuit consistencies within as it was originally designed. The difference in delays from a given path to a set of symmetric paths will be the same unless an inserted HT breaks symmetry. Symmetry can naturally exist in ICs or be artificially added. We describe methods to find and measure path delays against symmetric paths, as well as the advantages and disadvantages of this method. We discuss results of examples from benchmark circuits demonstrating the detection of hardware Trojans.
 

Premnath, A.P., Ju-Yeon Jo, Yoohwan Kim.  2014.  Application of NTRU Cryptographic Algorithm for SCADA Security. Information Technology: New Generations (ITNG), 2014 11th International Conference on. :341-346.

Critical Infrastructure represents the basic facilities, services and installations necessary for functioning of a community, such as water, power lines, transportation, or communication systems. Any act or practice that causes a real-time Critical Infrastructure System to impair its normal function and performance will have debilitating impact on security and economy, with direct implication on the society. SCADA (Supervisory Control and Data Acquisition) system is a control system which is widely used in Critical Infrastructure System to monitor and control industrial processes autonomously. As SCADA architecture relies on computers, networks, applications and programmable controllers, it is more vulnerable to security threats/attacks. Traditional SCADA communication protocols such as IEC 60870, DNP3, IEC 61850, or Modbus did not provide any security services. Newer standards such as IEC 62351 and AGA-12 offer security features to handle the attacks on SCADA system. However there are performance issues with the cryptographic solutions of these specifications when applied to SCADA systems. This research is aimed at improving the performance of SCADA security standards by employing NTRU, a faster and light-weight NTRU public key algorithm for providing end-to-end security.

Zhenlong Yuan, Cuilan Du, Xiaoxian Chen, Dawei Wang, Yibo Xue.  2014.  SkyTracer: Towards fine-grained identification for Skype traffic via sequence signatures. Computing, Networking and Communications (ICNC), 2014 International Conference on. :1-5.

Skype has been a typical choice for providing VoIP service nowadays and is well-known for its broad range of features, including voice-calls, instant messaging, file transfer and video conferencing, etc. Considering its wide application, from the viewpoint of ISPs, it is essential to identify Skype flows and thus optimize network performance and forecast future needs. However, in general, a host is likely to run multiple network applications simultaneously, which makes it much harder to classify each and every Skype flow from mixed traffic exactly. Especially, current techniques usually focus on host-level identification and do not have the ability to identify Skype traffic at the flow-level. In this paper, we first reveal the unique sequence signatures of Skype UDP flows and then implement a practical online system named SkyTracer for precise Skype traffic identification. To the best of our knowledge, this is the first time to utilize the strong sequence signatures to carry out early identification of Skype traffic. The experimental results show that SkyTracer can achieve very high accuracy at fine-grained level in identifying Skype traffic.

Yueying Huang, Jingang Zhang, Houyan Chen.  2014.  On the security of a certificateless signcryption scheme. Electronics, Computer and Applications, 2014 IEEE Workshop on. :664-667.

Signcryption is a cryptographic primitive that simultaneously realizes both the functions of public key encryption and digital signature in a logically single step, and with a cost significantly lower than that required by the traditional “signature and encryption” approach. Recently, an efficient certificateless signcryption scheme without using bilinear pairings was proposed by Zhu et al., which is claimed secure based on the assumptions that the compute Diffie-Hellman problem and the discrete logarithm problem are difficult. Although some security arguments were provided to show the scheme is secure, in this paper, we find that the signcryption construction due to Zhu et al. is not as secure as claimed. Specifically, we describe an adversary that can break the IND-CCA2 security of the scheme without any Unsigncryption query. Moreover, we demonstrate that the scheme is insecure against key replacement attack by describing a concrete attack approach.
 

Yi-Lu Wang, Sang-Chin Yang.  2014.  A Method of Evaluation for Insider Threat. Computer, Consumer and Control (IS3C), 2014 International Symposium on. :438-441.

Due to cyber security is an important issue of the cloud computing. Insider threat becomes more and more important for cyber security, it is also much more complex issue. But till now, there is no equivalent to a vulnerability scanner for insider threat. We survey and discuss the history of research on insider threat analysis to know system dynamics is the best method to mitigate insider threat from people, process, and technology. In the paper, we present a system dynamics method to model insider threat. We suggest some concludes for future research who are interested in insider threat issue The study.

Derhab, A., Bouras, A., Bin Muhaya, F., Khan, M.K., Yang Xiang.  2014.  Spam Trapping System: Novel security framework to fight against spam botnets. Telecommunications (ICT), 2014 21st International Conference on. :467-471.

In this paper, we inspire from two analogies: the warfare kill zone and the airport check-in system, to tackle the issue of spam botnet detection. We add a new line of defense to the defense-in-depth model called the third line. This line is represented by a security framework, named the Spam Trapping System (STS) and adopts the prevent-then-detect approach to fight against spam botnets. The framework exploits the application sandboxing principle to prevent the spam from going out of the host and detect the corresponding malware bot. We show that the proposed framework can ensure better security against malware bots. In addition, an analytical study demonstrates that the framework offers optimal performance in terms of detection time and computational cost in comparison to intrusion detection systems based on static and dynamic analysis.

Tong Liu, Qian Xu, Yuejun Li.  2014.  Adaptive filtering design for in-motion alignment of INS. Control and Decision Conference (2014 CCDC), The 26th Chinese. :2669-2674.

Misalignment angles estimation of strapdown inertial navigation system (INS) using global positioning system (GPS) data is highly affected by measurement noises, especially with noises displaying time varying statistical properties. Hence, adaptive filtering approach is recommended for the purpose of improving the accuracy of in-motion alignment. In this paper, a simplified form of Celso's adaptive stochastic filtering is derived and applied to estimate both the INS error states and measurement noise statistics. To detect and bound the influence of outliers in INS/GPS integration, outlier detection based on jerk tracking model is also proposed. The accuracy and validity of the proposed algorithm is tested through ground based navigation experiments.

Liming Shi, Yun Lin.  2014.  Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference. Signal Processing Letters, IEEE. 21:1385-1388.

A robust adaptive filtering algorithm based on the convex combination of two adaptive filters under the maximum correntropy criterion (MCC) is proposed. Compared with conventional minimum mean square error (MSE) criterion-based adaptive filtering algorithm, the MCC-based algorithm shows a better robustness against impulsive interference. However, its major drawback is the conflicting requirements between convergence speed and steady-state mean square error. In this letter, we use the convex combination method to overcome the tradeoff problem. Instead of minimizing the squared error to update the mixing parameter in conventional convex combination scheme, the method of maximizing the correntropy is introduced to make the proposed algorithm more robust against impulsive interference. Additionally, we report a novel weight transfer method to further improve the tracking performance. The good performance in terms of convergence rate and steady-state mean square error is demonstrated in plant identification scenarios that include impulsive interference and abrupt changes.