Visible to the public Biblio

Found 2444 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2023-08-25
Deshmukh, Kshitij, Jain, Avani, Singh, Shubhangi, Bhattacharya, Pronaya, Prasad, Vivek, Zuhair, Mohd.  2022.  A Secured Dialog Protocol Scheme Over Content Centric Networks. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :95–101.
Internet architecture has transformed into a more complex form than it was about a decade back. Today the internet comprises multimedia information where services and web applications have started to shift their focus on content. In our perspective of communication systems, content-centric networking (CCN) proposes a new methodology. The use of cache memory at the network level is an important feature of this new architecture. This cache is intended to store transit details for a set period, and it is hoped that this capability will aid in network quality, especially in a rapidly increasing video streaming situation. Information-centric networking (ICN) is the one architecture that is seen as a possible alternative for shifting the Internet from a host-centric to a content-centric point-of-view. It focuses on data rather than content. CCN is more reliable when it comes to data delivery as it does not need to depend on location for data. CCN architecture is scalable, secure and provides mobility support. In this paper, we implement a ccnchat, a chat testing application, which is created with the help of libraries provided by Palo Alto Research Center (PARC) on local area network (LAN) between two users and demonstrate the working of this local chat application over CCN network that works alongside existing IP infrastructure.
Wu, Bo, Chen, Lei, Zong, Qi.  2022.  Research on New Power System Network Security Guarantee System. 2022 International Conference on Informatics, Networking and Computing (ICINC). :91–94.
Based on the characteristics of the new power system with many points, wide range and unattended, this paper studies the specific Cyberspace security risks faced by the disease control side, the station side and the site side, and proposes a new power system Cyberspace security assurance system of “integration of collection, network, side, end, industry and people”. The site side security access measures, the site side civil air defense technology integration measures, the whole business endogenous security mechanism, the whole domain communication security mechanism, the integrated monitoring and early warning and emergency response mechanism are specifically adopted to form a comprehensive integrated security mechanism for the new power system, form a sustainable protection model, effectively improve the security capability, while taking into account the cost and operational complexity of specific implementation links, Provide comprehensive guarantee capability for the safe operation of the new power system.
2023-08-24
Cao, Yaofu, Li, Tianquan, Li, Xiaomeng, Zhao, Jincheng, Liu, Junwen, Yan, Junlu.  2022.  Research on network security behavior audit method of power industrial control system operation support cloud platform based on FP-Growth association rule algorithm. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :409–412.
With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
Zhang, Yuqiang, Hao, Zhiqiang, Hu, Ning, Luo, Jiawei, Wang, Chonghua.  2022.  A virtualization-based security architecture for industrial control systems. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :94–101.
The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Zhang, Ge, Zhang, Zheyu, Sun, Jun, Wang, Zun, Wang, Rui, Wang, Shirui, Xie, Chengyun.  2022.  10 Gigabit industrial thermal data acquisition and storage solution based on software-defined network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :616–619.
With the wide application of Internet technology in the industrial control field, industrial control networks are getting larger and larger, and the industrial data generated by industrial control systems are increasing dramatically, and the performance requirements of the acquisition and storage systems are getting higher and higher. The collection and analysis of industrial equipment work logs and industrial timing data can realize comprehensive management and continuous monitoring of industrial control system work status, as well as intrusion detection and energy efficiency analysis in terms of traffic and data. In the face of increasingly large realtime industrial data, existing log collection systems and timing data gateways, such as packet loss and other phenomena [1], can not be more complete preservation of industrial control network thermal data. The emergence of software-defined networking provides a new solution to realize massive thermal data collection in industrial control networks. This paper proposes a 10-gigabit industrial thermal data acquisition and storage scheme based on software-defined networking, which uses software-defined networking technology to solve the problem of insufficient performance of existing gateways.
Zhang, Deng, Zhao, Jiang, Ding, Dingding, Gao, Hanjun.  2022.  Networked Control System Information Security Platform. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :738–742.
With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Gong, Xiao, Li, Mengwei, Zhao, Zhengbin, Cui, Dengqi.  2022.  Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Sun, Jun, Li, Yang, Zhang, Ge, Dong, Liangyu, Yang, Zitao, Wang, Mufeng, Cai, Jiahe.  2022.  Data traceability scheme of industrial control system based on digital watermark. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :322–325.
The fourth industrial revolution has led to the rapid development of industrial control systems. While the large number of industrial system devices connected to the Internet provides convenience for production management, it also exposes industrial control systems to more attack surfaces. Under the influence of multiple attack surfaces, sensitive data leakage has a more serious and time-spanning negative impact on industrial production systems. How to quickly locate the source of information leakage plays a crucial role in reducing the loss from the attack, so there are new requirements for tracing sensitive data in industrial control information systems. In this paper, we propose a digital watermarking traceability scheme for sensitive data in industrial control systems to address the above problems. In this scheme, we enhance the granularity of traceability by classifying sensitive data types of industrial control systems into text, image and video data with differentiated processing, and achieve accurate positioning of data sources by combining technologies such as national secret asymmetric encryption and hash message authentication codes, and mitigate the impact of mainstream watermarking technologies such as obfuscation attacks and copy attacks on sensitive data. It also mitigates the attacks against the watermarking traceability such as obfuscation attacks and copy attacks. At the same time, this scheme designs a data flow watermark monitoring module on the post-node of the data source to monitor the unauthorized sensitive data access behavior caused by other attacks.
Wei-Kocsis, Jin, Sabounchi, Moein, Yang, Baijian, Zhang, Tonglin.  2022.  Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm. 2022 IEEE Frontiers in Education Conference (FIE). :1–5.
This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks.
ISSN: 2377-634X
2023-08-23
Guo, Jian, Guo, Hua, Zhang, Zhong.  2022.  Research on Intelligent Network Operation Management System Based on Anomaly Detection and Time Series Forecasting Algorithms. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :338—341.
The research try to implements an intelligent network operation management system for enterprise networks. First, based on Flask-state software architecture, the system adapt to Phytium CPU and Galaxy Kylin operating system successfully. Second, using the Isolation Forest algorithm, the system implements the anomaly detection of host data such as CPU usage. Third, using the Holt-winters seasonal prediction model, the system can predict time series data such as network I/O. The results show that the system can realizes anomaly detection and time series data prediction more precisely and intelligently.
Zhang, Chaochao, HOU, RUI.  2022.  Security Support on Memory Controller for Heap Memory Safety. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :248—257.
Memory corruption attacks have existed for multiple decades, and have become a major threat to computer systems. At the same time, a number of defense techniques have been proposed by research community. With the wide adoption of CPU-based memory safety solutions, sophisticated attackers tend to tamper with system memory via direct memory access (DMA) attackers, which leverage DMA-enabled I/O peripherals to fully compromise system memory. The Input-Output Memory Management Units (IOMMUs) based solutions are widely believed to mitigate DMA attacks. However, recent works point out that attackers can bypass IOMMU-based protections by manipulating the DMA interfaces, which are particularly vulnerable to race conditions and other unsafe interactions.State-of-the-art hardware-supported memory protections rely on metadata to perform security checks on memory access. Consequently, the additional memory request for metadata results in significant performance degradation, which limited their feasibility in real world deployments. For quantitative analysis, we separate the total metadata access latency into DRAM latency, on-chip latency, and cache latency, and observe that the actual DRAM access is less than half of the total latency. To minimize metadata access latency, we propose EMC, a low-overhead heap memory safety solution that implements a tripwire based mechanism on the memory controller. In addition, by using memory controller as a natural gateway of various memory access data paths, EMC could provide comprehensive memory safety enforcement to all memory data paths from/to system physical memory. Our evaluation shows an 0.54% performance overhead on average for SPEC 2017 workloads.
Liang, Chenjun, Deng, Li, Zhu, Jincan, Cao, Zhen, Li, Chao.  2022.  Cloud Storage I/O Load Prediction Based on XB-IOPS Feature Engineering. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :54—60.
With the popularization of cloud computing and the deepening of its application, more and more cloud block storage systems have been put into use. The performance optimization of cloud block storage systems has become an important challenge facing today, which is manifested in the reduction of system performance caused by the unbalanced resource load of cloud block storage systems. Accurately predicting the I/O load status of the cloud block storage system can effectively avoid the load imbalance problem. However, the cloud block storage system has the characteristics of frequent random reads and writes, and a large amount of I/O requests, which makes prediction difficult. Therefore, we propose a novel I/O load prediction method for XB-IOPS feature engineering. The feature engineering is designed according to the I/O request pattern, I/O size and I/O interference, and realizes the prediction of the actual load value at a certain moment in the future and the average load value in the continuous time interval in the future. Validated on a real dataset of Alibaba Cloud block storage system, the results show that the XB-IOPS feature engineering prediction model in this paper has better performance in Alibaba Cloud block storage devices where random I/O and small I/O dominate. The prediction performance is better, and the prediction time is shorter than other prediction models.
2023-08-18
Zheng, Chengxu, Wang, Xiaopeng, Luo, Xiaoyu, Fang, Chongrong, He, Jianping.  2022.  An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
2023-08-11
Zhuoyu, Han, Yongzhen, Li.  2022.  Design and implementation of efficient hash functions. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :1240—1243.
With the rapid popularity of the network, the development of information encryption technology has a significant role and significance in securing network security. The security of information has become an issue of concern to the whole society, and the study of cryptography has been increasingly concerned, and the hash function is the core of modern cryptography, the most common hash algorithms are MD5 series of algorithms, SHA series of algorithms. MD5 is a popular and excellent typical Hash encryption technology today, which is used for password management, electronic signature, spam screening. In this paper, we focus on the improved MD5 algorithm with more efficiency, focusing on the internal structure of MD5, and finally making it more efficient in retrieval.
Zhu, Haiting, Wan, Junmei, Li, Nan, Deng, Yingying, He, Gaofeng, Guo, Jing, Zhang, Lu.  2022.  Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
Wang, Jing, Wu, Fengheng, Zhang, Tingbo, Wu, Xiaohua.  2022.  DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :29—32.
Cloud computing has been widely used because of its low price, high reliability, and generality of services. However, considering that cloud computing transactions between users and service providers are usually asynchronous, data privacy involving users and service providers may lead to a crisis of trust, which in turn hinders the expansion of cloud computing applications. In this paper, we propose DPP, a data privacy-preserving cloud computing scheme based on homomorphic encryption, which achieves correctness, compatibility, and security. DPP implements data privacy-preserving by introducing homomorphic encryption. To verify the security of DPP, we instantiate DPP based on the Paillier homomorphic encryption scheme and evaluate the performance. The experiment results show that the time-consuming of the key steps in the DPP scheme is reasonable and acceptable.
Zhang, Jie.  2022.  Design of Portable Sensor Data Storage System Based on Homomorphic Encryption Algorithm. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—4.
With the development of sensor technology, people put forward a higher level, more diversified demand for portable rangefinders. However, its data storage method has not been developed in a large scale and breakthrough. This paper studies the design of portable sensor data storage system based on homomorphic encryption algorithm, which aims to maintain the security of sensor data storage through homomorphic encryption algorithm. This paper analyzes the functional requirements of the sensor data storage system, puts forward the overall design scheme of the system, and explains in detail the requirements and indicators for the specific realization of each part of the function. Analyze the different technical resources currently used in the storage system field, and dig deep into the key technologies that match the portable sensor data storage system. This paper has changed the problem of cumbersome operation steps and inconvenient data recovery in the sensor data storage system. This paper mainly uses the method of control variables and data comparison to carry out the experiment. The experimental results show that the success rate of the sensor data storage system under the homomorphic encryption algorithm is infinitely close to 100% as the number of data blocks increases.
2023-08-04
Zhang, Hengwei, Zhang, Xiaoning, Sun, Pengyu, Liu, Xiaohu, Ma, Junqiang, Zhang, Yuchen.  2022.  Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.
2023-08-03
Liu, Zhijuan, Zhang, Li, Wu, Xuangou, Zhao, Wei.  2022.  Test Case Filtering based on Generative Adversarial Networks. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :65–69.
Fuzzing is a popular technique for finding soft-ware vulnerabilities. Despite their success, the state-of-art fuzzers will inevitably produce a large number of low-quality inputs. In recent years, Machine Learning (ML) based selection strategies have reported promising results. However, the existing ML-based fuzzers are limited by the lack of training data. Because the mutation strategy of fuzzing can not effectively generate useful input, it is prohibitively expensive to collect enough inputs to train models. In this paper, propose a generative adversarial networks based solution to generate a large number of inputs to solve the problem of insufficient data. We implement the proposal in the American Fuzzy Lop (AFL), and the experimental results show that it can find more crashes at the same time compared with the original AFL.
ISSN: 2325-5609
Zhang, Yuhang, Zhang, Qian, Jiang, Man, Su, Jiangtao.  2022.  SCGAN: Generative Adversarial Networks of Skip Connection for Face Image Inpainting. 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–6.
Deep learning has been widely applied for jobs involving face inpainting, however, there are usually some problems, such as incoherent inpainting edges, lack of diversity of generated images and other problems. In order to get more feature information and improve the inpainting effect, we therefore propose a Generative Adversarial Network of Skip Connection (SCGAN), which connects the encoder layers and the decoder layers by skip connection in the generator. The coherence and consistency of the image inpainting edges are improved, and the finer features of the image inpainting are refined, simultaneously using the discriminator's local and global double discriminators model. We also employ WGAN-GP loss to enhance model stability during training, prevent model collapse, and increase the variety of inpainting face images. Finally, experiments on the CelebA dataset and the LFW dataset are performed, and the model's performance is assessed using the PSNR and SSIM indices. Our model's face image inpainting is more realistic and coherent than that of other models, and the model training is more reliable.
ISSN: 2831-7343
Pardede, Hilman, Zilvan, Vicky, Ramdan, Ade, Yuliani, Asri R., Suryawati, Endang, Kusumowardani, Renni.  2022.  Adversarial Networks-Based Speech Enhancement with Deep Regret Loss. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS). :1–6.
Speech enhancement is often applied for speech-based systems due to the proneness of speech signals to additive background noise. While speech processing-based methods are traditionally used for speech enhancement, with advancements in deep learning technologies, many efforts have been made to implement them for speech enhancement. Using deep learning, the networks learn mapping functions from noisy data to clean ones and then learn to reconstruct the clean speech signals. As a consequence, deep learning methods can reduce what is so-called musical noise that is often found in traditional speech enhancement methods. Currently, one popular deep learning architecture for speech enhancement is generative adversarial networks (GAN). However, the cross-entropy loss that is employed in GAN often causes the training to be unstable. So, in many implementations of GAN, the cross-entropy loss is replaced with the least-square loss. In this paper, to improve the training stability of GAN using cross-entropy loss, we propose to use deep regret analytic generative adversarial networks (Dragan) for speech enhancements. It is based on applying a gradient penalty on cross-entropy loss. We also employ relativistic rules to stabilize the training of GAN. Then, we applied it to the least square and Dragan losses. Our experiments suggest that the proposed method improve the quality of speech better than the least-square loss on several objective quality metrics.
Zhang, Lin, Fan, Fuyou, Dai, Yang, He, Chunlin.  2022.  Analysis and Research of Generative Adversarial Network in Anomaly Detection. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :1700–1703.
In recent years, generative adversarial networks (GAN) have become a research hotspot in the field of deep learning. Researchers apply them to the field of anomaly detection and are committed to effectively and accurately identifying abnormal images in practical applications. In anomaly detection, traditional supervised learning algorithms have limitations in training with a large number of known labeled samples. Therefore, the anomaly detection model of unsupervised learning GAN is the research object for discussion and research. Firstly, the basic principles of GAN are introduced. Secondly, several typical GAN-based anomaly detection models are sorted out in detail. Then by comparing the similarities and differences of each derivative model, discuss and summarize their respective advantages, limitations and application scenarios. Finally, the problems and challenges faced by GAN in anomaly detection are discussed, and future research directions are prospected.
2023-07-31
Zhang, Liangjun, Tao, Kai, Qian, Weifeng, Wang, Weiming, Liang, Junpeng, Cai, Yi, Feng, Zhenhua.  2022.  Real-Time FPGA Investigation of Interplay Between Probabilistic Shaping and Forward Error Correction. Journal of Lightwave Technology. 40:1339—1345.
In this work, we implement a complete probabilistic amplitude shaping (PAS) architecture on a field-programmable gate array (FPGA) platform to study the interplay between probabilistic shaping (PS) and forward error correction (FEC). Due to the fully parallelized input–output interfaces based on look up table (LUT) and low computational complexity without high-precision multiplication, hierarchical distribution matching (HiDM) is chosen as the solution for real time probabilistic shaping. In terms of FEC, we select two kinds of the mainstream soft decision-forward error correction (SD-FEC) algorithms currently used in optical communication system, namely Open FEC (OFEC) and soft-decision quasi-cyclic low-density parity-check (SD-QC-LDPC) codes. Through FPGA experimental investigation, we studied the impact of probabilistic shaping on OFEC and LDPC, respectively, based on PS-16QAM under moderate shaping, and also the impact of probabilistic shaping on LDPC code based on PS-64QAM under weak/strong shaping. The FPGA experimental results show that if pre-FEC bit error rate (BER) is used as the predictor, moderate shaping induces no degradation on the OFEC performance, while strong shaping slightly degrades the error correction performance of LDPC. Nevertheless, there is no error floor when the output BER is around 10-15. However, if normalized generalized mutual information (NGMI) is selected as the predictor, the performance degradation of LDPC will become insignificant, which means pre-FEC BER may not a good predictor for LDPC in probabilistic shaping scenario. We also studied the impact of residual errors after FEC decoding on HiDM. The FPGA experimental results show that the increased BER after HiDM decoding is within 10 times compared to post-FEC BER.
Conference Name: Journal of Lightwave Technology
Wang, Weiming, Qian, Weifeng, Tao, Kai, Wei, Zitao, Zhang, Shihua, Xia, Yan, Chen, Yong.  2022.  Investigation of Potential FEC Schemes for 800G-ZR Forward Error Correction. 2022 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

With a record 400Gbps 100-piece-FPGA implementation, we investigate performance of the potential FEC schemes for OIF-800GZR. By comparing the power dissipation and correction threshold at 10−15 BER, we proposed the simplified OFEC for the 800G-ZR FEC.

Guo, Yaqiong, Zhou, Peng, Lu, Xin, Sun, Wangshu, Sun, Jiasai.  2022.  A Fuzzy Multi-Identity Based Signature. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :219—223.
Identity based digital signature is an important research topic of public key cryptography, which can effectively guarantee the authentication, integrity and unforgeability of data. In this paper, a new fuzzy multi-identity based signature scheme is proposed. It is proved that the scheme is existentially unforgeable against adaptively chosen message attack, and the security of the signature scheme can be reduced to CDH assumption. The storage cost and the communication overhead are small, therefore the new fuzzy multi-identity based signature (FMIBS) scheme can be implemented efficiently.