Visible to the public Biblio

Found 2444 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2023-03-31
Chen, Xiaofeng, Wei, Zunbo, Jia, Xiangjuan, Zheng, Peiyu, Han, Mengwei, Yang, Xiaohu.  2022.  Current Status and Prospects of Blockchain Security Standardization. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :24–29.
In recent years, blockchain technology has become one of the key technical innovation fields in the world. From the simple Bitcoin that can only be transferred at first to the blockchain application ecology that is now blooming, blockchain is gradually building a credible internet of value. However, with the continuous development and application of blockchain, even the blockchain based on cryptography is facing a series of network security problems and has caused great property losses to participants. Therefore, studying blockchain security and accelerating standardization of blockchain security have become the top priority to ensure the orderly and healthy development of blockchain technology. This paper briefly introduces the scope of blockchain security from the perspective of network security, sorts out some existing standards related to blockchain security, and gives some suggestions to promote the development and application of blockchain security standardization.
ISSN: 2693-8928
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
Saraswat, Deepti, Ladhiya, Karan, Bhattacharya, Pronaya, Zuhair, Mohd.  2022.  PHBio: A Pallier Homomorphic Biometric Encryption Scheme in Healthcare 4.0 Ecosystems. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :306–312.

In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.

Yang, Jing, Yang, Yibiao, Sun, Maolin, Wen, Ming, Zhou, Yuming, Jin, Hai.  2022.  Isolating Compiler Optimization Faults via Differentiating Finer-grained Options. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :481–491.

Code optimization is an essential feature for compilers and almost all software products are released by compiler optimizations. Consequently, bugs in code optimization will inevitably cast significant impact on the correctness of software systems. Locating optimization bugs in compilers is challenging as compilers typically support a large amount of optimization configurations. Although prior studies have proposed to locate compiler bugs via generating witness test programs, they are still time-consuming and not effective enough. To address such limitations, we propose an automatic bug localization approach, ODFL, for locating compiler optimization bugs via differentiating finer-grained options in this study. Specifically, we first disable the fine-grained options that are enabled by default under the bug-triggering optimization levels independently to obtain bug-free and bug-related fine-grained options. We then configure several effective passing and failing optimization sequences based on such fine-grained options to obtain multiple failing and passing compiler coverage. Finally, such generated coverage information can be utilized via Spectrum-Based Fault Localization formulae to rank the suspicious compiler files. We run ODFL on 60 buggy GCC compilers from an existing benchmark. The experimental results show that ODFL significantly outperforms the state-of-the-art compiler bug isolation approach RecBi in terms of all the evaluated metrics, demonstrating the effectiveness of ODFL. In addition, ODFL is much more efficient than RecBi as it can save more than 88% of the time for locating bugs on average.

ISSN: 1534-5351

Xu, Zichuan, Ren, Wenhao, Liang, Weifa, Xu, Wenzheng, Xia, Qiufen, Zhou, Pan, Li, Mingchu.  2022.  Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
Lu, Xiuyun, Zhao, Wenxing, Zhu, Yuquan.  2022.  Research on Network Security Protection System Based on Computer Big Data Era. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1487–1490.
This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edge-cloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining end-address hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Zhang, Hongjun, Cheng, Shuyan, Cai, Qingyuan, Jiang, Xiao.  2022.  Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.  2022.  Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.  2022.  Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
Zhang, Junjian, Tan, Hao, Deng, Binyue, Hu, Jiacen, Zhu, Dong, Huang, Linyi, Gu, Zhaoquan.  2022.  NMI-FGSM-Tri: An Efficient and Targeted Method for Generating Adversarial Examples for Speaker Recognition. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :167–174.
Most existing deep neural networks (DNNs) are inexplicable and fragile, which can be easily deceived by carefully designed adversarial example with tiny undetectable noise. This allows attackers to cause serious consequences in many DNN-assisted scenarios without human perception. In the field of speaker recognition, the attack for speaker recognition system has been relatively mature. Most works focus on white-box attacks that assume the information of the DNN is obtainable, and only a few works study gray-box attacks. In this paper, we study blackbox attacks on the speaker recognition system, which can be applied in the real world since we do not need to know the system information. By combining the idea of transferable attack and query attack, our proposed method NMI-FGSM-Tri can achieve the targeted goal by misleading the system to recognize any audio as a registered person. Specifically, our method combines the Nesterov accelerated gradient (NAG), the ensemble attack and the restart trigger to design an attack method that generates the adversarial audios with good performance to attack blackbox DNNs. The experimental results show that the effect of the proposed method is superior to the extant methods, and the attack success rate can reach as high as 94.8% even if only one query is allowed.
Zhou, Linjun, Cui, Peng, Zhang, Xingxuan, Jiang, Yinan, Yang, Shiqiang.  2022.  Adversarial Eigen Attack on BlackBox Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15233–15241.
Black-box adversarial attack has aroused much research attention for its difficulty on nearly no available information of the attacked model and the additional constraint on the query budget. A common way to improve attack efficiency is to transfer the gradient information of a white-box substitute model trained on an extra dataset. In this paper, we deal with a more practical setting where a pre-trained white-box model with network parameters is provided without extra training data. To solve the model mismatch problem between the white-box and black-box models, we propose a novel algorithm EigenBA by systematically integrating gradient-based white-box method and zeroth-order optimization in black-box methods. We theoretically show the optimal directions of perturbations for each step are closely related to the right singular vectors of the Jacobian matrix of the pretrained white-box model. Extensive experiments on ImageNet, CIFAR-10 and WebVision show that EigenBA can consistently and significantly outperform state-of-the-art baselines in terms of success rate and attack efficiency.
Zhang, Jie, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Zhang, Lei, Wu, Chao.  2022.  Towards Efficient Data Free Blackbox Adversarial Attack. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15094–15104.
Classic black-box adversarial attacks can take advantage of transferable adversarial examples generated by a similar substitute model to successfully fool the target model. However, these substitute models need to be trained by target models' training data, which is hard to acquire due to privacy or transmission reasons. Recognizing the limited availability of real data for adversarial queries, recent works proposed to train substitute models in a data-free black-box scenario. However, their generative adversarial networks (GANs) based framework suffers from the convergence failure and the model collapse, resulting in low efficiency. In this paper, by rethinking the collaborative relationship between the generator and the substitute model, we design a novel black-box attack framework. The proposed method can efficiently imitate the target model through a small number of queries and achieve high attack success rate. The comprehensive experiments over six datasets demonstrate the effectiveness of our method against the state-of-the-art attacks. Especially, we conduct both label-only and probability-only attacks on the Microsoft Azure online model, and achieve a 100% attack success rate with only 0.46% query budget of the SOTA method [49].
Ren, Zuyu, Jiang, Weidong, Zhang, Xinyu.  2022.  Few-Shot HRRP Target Recognition Method Based on Gaussian Deep Belief Network and Model-Agnostic Meta-Learning. 2022 7th International Conference on Signal and Image Processing (ICSIP). :260–264.
In recent years, radar automatic target recognition (RATR) technology based on high-resolution range profile (HRRP) has received extensive attention in various fields. However, insufficient data on non-cooperative targets seriously affects recognition performance of this technique. For HRRP target recognition under few-shot condition, we proposed a novel gaussian deep belief network based on model-agnostic meta-learning (GDBN-MAML). In the proposed method, GDBN allowed real-value data to be transmitted over the entire network, which effectively avoided feature loss due to binarization requirements of conventional deep belief network (DBN) for data. In addition, we optimized the initial parameters of GDBN by multi-task learning based on MAML. In this way, the number of training samples required by the model for new recognition tasks could be reduced. We applied the proposed method to the HRRP recognition experiments of 3 types of 3D simulated aircraft models. The experimental results showed that the proposed method had higher recognition accuracy and generalization performance under few-shot condition compared with conventional deep learning methods.
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-03-17
Kim, Yujin, Liu, Zhan, Jiang, Hao, Ma, T.P., Zheng, Jun-Fei, Chen, Phil, Condo, Eric, Hendrix, Bryan, O'Neill, James A..  2022.  A Study on the Hf0.5Zr0.5O2 Ferroelectric Capacitors fabricated with Hf and Zr Chlorides. 2022 China Semiconductor Technology International Conference (CSTIC). :1–3.
Ferroelectric capacitor memory devices with carbon-free Hf0.5Zr0.5O2 (HZO) ferroelectric films are fabricated and characterized. The HZO ferroelectric films are deposited by ALD at temperatures from 225 to 300°C, with HfCl4 and ZrCl4 as the precursors. Residual chlorine from the precursors is measured and studied systematically with various process temperatures. 10nm HZO films with optimal ALD growth temperature at 275°C exhibit remanent polarization of 25µC/cm2 and cycle endurance of 5×1011. Results will be compared with those from HZO films deposited with carbon containing metal-organic precursors.
Cui, Yang, Ma, Yikai, Zhang, Yudong, Lin, Xi, Zhang, Siwei, Si, Tianbin, Zhang, Changhai.  2022.  Effect of multilayer structure on energy storage characteristics of PVDF ferroelectric polymer. 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). :582–586.
Dielectric capacitors have attracted attention as energy storage devices that can achieve rapid charge and discharge. But the key to restricting its development is the low energy storage density of dielectric materials. Polyvinylidene fluoride (PVDF), as a polymer with high dielectric properties, is expected to improve the energy storage density of dielectric materials. In this work, the multilayer structure of PVDF ferroelectric polymer is designed, and the influence of the number of layers on the maximum polarization, remanent polarization, applied electric field and energy storage density of the dielectric material is studied. The final obtained double-layer PVDF obtained a discharge energy storage density of 10.6 J/cm3 and an efficiency of 49.1% at an electric field of 410 kV/mm; the three-layer PVDF obtained a discharge energy storage density of 11.0 J/cm3 and an efficiency of 37.2% at an electric field of 440 kV/mm.
Zheng, Cuifang, Wu, Jiaju, Kong, Linggang, Kang, Shijia, Cheng, Zheng, Luo, Bin.  2022.  The Research on Material Properties Database System Based on Network Sharing. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1163–1168.
Based on the analysis of material performance data management requirements, a network-sharing scheme of material performance data is proposed. A material performance database system including material performance data collection, data query, data analysis, data visualization, data security management and control modules is designed to solve the problems of existing material performance database network sharing, data fusion and multidisciplinary support, and intelligent services Inadequate standardization and data security control. This paper adopts hierarchical access control strategy. After logging into the material performance database system, users can standardize the material performance data and store them to form a shared material performance database. The standardized material performance data of the database system shall be queried and shared under control according to the authority. Then, the database system compares and analyzes the material performance data obtained from controlled query sharing. Finally, the database system visualizes the shared results of controlled queries and the comparative analysis results obtained. The database system adopts the MVC architecture based on B/S (client/server) cross platform J2EE. The Third-party computing platforms are integrated in System. Users can easily use material performance data and related services through browsers and networks. MongoDB database is used for data storage, supporting distributed storage and efficient query.
Zhao, Ran, Qin, Qi, Xu, Ningya, Nan, Guoshun, Cui, Qimei, Tao, Xiaofeng.  2022.  SemKey: Boosting Secret Key Generation for RIS-assisted Semantic Communication Systems. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–5.
Deep learning-based semantic communications (DLSC) significantly improve communication efficiency by only transmitting the meaning of the data rather than a raw message. Such a novel paradigm can brace the high-demand applications with massive data transmission and connectivities, such as automatic driving and internet-of-things. However, DLSC are also highly vulnerable to various attacks, such as eavesdropping, surveillance, and spoofing, due to the openness of wireless channels and the fragility of neural models. To tackle this problem, we present SemKey, a novel physical layer key generation (PKG) scheme that aims to secure the DLSC by exploring the underlying randomness of deep learning-based semantic communication systems. To boost the generation rate of the secret key, we introduce a reconfigurable intelligent surface (RIS) and tune its elements with the randomness of semantic drifts between a transmitter and a receiver. Precisely, we first extract the random features of the semantic communication system to form the randomly varying switch sequence of the RIS-assisted channel and then employ the parallel factor-based channel detection method to perform the channel detection under RIS assistance. Experimental results show that our proposed SemKey significantly improves the secret key generation rate, potentially paving the way for physical layer security for DLSC.
ISSN: 2577-2465
Chen, Xinghua, Huang, Lixian, Zheng, Dan, Chen, Jinchang, Li, Xinchao.  2022.  Research and Application of Communication Security in Security and Stability Control System of Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1215–1221.
Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
2023-03-06
Jiang, Linlang, Zhou, Jingbo, Xu, Tong, Li, Yanyan, Chen, Hao, Dou, Dejing.  2022.  Time-aware Neural Trip Planning Reinforced by Human Mobility. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Trip planning, which targets at planning a trip consisting of several ordered Points of Interest (POIs) under user-provided constraints, has long been treated as an important application for location-based services. The goal of trip planning is to maximize the chance that the users will follow the planned trip while it is difficult to directly quantify and optimize the chance. Conventional methods either leverage statistical analysis to rank POIs to form a trip or generate trips following pre-defined objectives based on constraint programming to bypass such a problem. However, these methods may fail to reflect the complex latent patterns hidden in the human mobility data. On the other hand, though there are a few deep learning-based trip recommendation methods, these methods still cannot handle the time budget constraint so far. To this end, we propose a TIme-aware Neural Trip Planning (TINT) framework to tackle the above challenges. First of all, we devise a novel attention-based encoder-decoder trip generator that can learn the correlations among POIs and generate trips under given constraints. Then, we propose a specially-designed reinforcement learning (RL) paradigm to directly optimize the objective to obtain an optimal trip generator. For this purpose, we introduce a discriminator, which distinguishes the generated trips from real-life trips taken by users, to provide reward signals to optimize the generator. Subsequently, to ensure the feedback from the discriminator is always instructive, we integrate an adversarial learning strategy into the RL paradigm to update the trip generator and the discriminator alternately. Moreover, we devise a novel pre-training schema to speed up the convergence for an efficient training process. Extensive experiments on four real-world datasets validate the effectiveness and efficiency of our framework, which shows that TINT could remarkably outperform the state-of-the-art baselines within short response time.
ISSN: 2161-4407
2023-03-03
Shrestha, Raj, Leinonen, Juho, Zavgorodniaia, Albina, Hellas, Arto, Edwards, John.  2022.  Pausing While Programming: Insights From Keystroke Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). :187–198.
Pauses in typing are generally considered to indicate cognitive processing and so are of interest in educational contexts. While much prior work has looked at typing behavior of Computer Science students, this paper presents results of a study specifically on the pausing behavior of students in Introductory Computer Programming. We investigate the frequency of pauses of different lengths, what last actions students take before pausing, and whether there is a correlation between pause length and performance in the course. We find evidence that frequency of pauses of all lengths is negatively correlated with performance, and that, while some keystrokes initiate pauses consistently across pause lengths, other keystrokes more commonly initiate short or long pauses. Clustering analysis discovers two groups of students, one that takes relatively fewer mid-to-long pauses and performs better on exams than the other.
Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.  2022.  A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.  2022.  SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
Abdel-Halim, Islam Tharwat, Zayan, Hassan M..  2022.  Evaluating the Performance of Lightweight Block Ciphers for Resource-Constrained IoT Devices. 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES). :39–44.
In the context of the Internet of Things (IoT), lightweight block ciphers are of vital importance. Due to the nature of the devices involved, traditional security solutions can add overhead and perhaps inhibit the application's objective due to resource limits. Lightweight cryptography is a novel suite of ciphers that aims to provide hardware-constrained devices with a high level of security while maintaining a low physical cost and high performance. In this paper, we are going to evaluate the performance of some of the recently proposed lightweight block ciphers (GIFT-COFB, Romulus, and TinyJAMBU) on the Arduino Due. We analyze data on each algorithm's performance using four metrics: average encryption and decryption execution time; throughput; power consumption; and memory utilization. Among our chosen ciphers, we find that TinyJAMBU and GIFT-COFB are excellent choices for resource-constrained IoT devices.
Zhang, Fengbin, Liu, Xingwei, Wei, Zechen, Zhang, Jiali, Yang, Nan, Song, Xuri.  2022.  Key Feature Mining Method for Power-Cut Window Based on Grey Relational Analysis. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 5:595–598.
In the process of compiling the power-cut window period of the power grid equipment maintenance plan, problems such as omission of constraints are prone to occur due to excessive reliance on manual experience. In response to these problems, this paper proposes a method for mining key features of the power-cut window based on grey relational analysis. Through mining and analysis of the historical operation data of the power grid, the operation data of new energy, and the historical power-cut information of equipment, the indicators that play a key role in the arrangement of the outage window period of the equipment maintenance plan are found. Then use the key indicator information to formulate the window period. By mining the relationship between power grid operation data and equipment power outages, this paper can give full play to the big data advantages of the power grid, improve the accuracy and efficiency of the power-cut window period.