Visible to the public Biblio

Found 377 results

Filters: Keyword is invasive software  [Clear All Filters]
2020-11-17
Jaiswal, M., Malik, Y., Jaafar, F..  2018.  Android gaming malware detection using system call analysis. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1—5.
Android operating systems have become a prime target for attackers as most of the market is currently dominated by Android users. The situation gets worse when users unknowingly download or sideload cloning applications, especially gaming applications that look like benign games. In this paper, we present, a dynamic Android gaming malware detection system based on system call analysis to classify malicious and legitimate games. We performed the dynamic system call analysis on normal and malicious gaming applications while applications are in execution state. Our analysis reveals the similarities and differences between benign and malware game system calls and shows how dynamically analyzing the behavior of malicious activity through system calls during runtime makes it easier and is more effective to detect malicious applications. Experimental analysis and results shows the efficiency and effectiveness of our approach.
2020-11-16
Su, H., Halak, B., Zwolinski, M..  2019.  Two-Stage Architectures for Resilient Lightweight PUFs. 2019 IEEE 4th International Verification and Security Workshop (IVSW). :19–24.
The following topics are dealt with: Internet of Things; invasive software; security of data; program testing; reverse engineering; product codes; binary codes; decoding; maximum likelihood decoding; field programmable gate arrays.
2020-11-09
Li, H., Patnaik, S., Sengupta, A., Yang, H., Knechtel, J., Yu, B., Young, E. F. Y., Sinanoglu, O..  2019.  Attacking Split Manufacturing from a Deep Learning Perspective. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
The notion of integrated circuit split manufacturing which delegates the front-end-of-line (FEOL) and back-end-of-line (BEOL) parts to different foundries, is to prevent overproduction, piracy of the intellectual property (IP), or targeted insertion of hardware Trojans by adversaries in the FEOL facility. In this work, we challenge the security promise of split manufacturing by formulating various layout-level placement and routing hints as vector- and image-based features. We construct a sophisticated deep neural network which can infer the missing BEOL connections with high accuracy. Compared with the publicly available network-flow attack [1], for the same set of ISCAS-85benchmarks, we achieve 1.21× accuracy when splitting on M1 and 1.12× accuracy when splitting on M3 with less than 1% running time.
Mobaraki, S., Amirkhani, A., Atani, R. E..  2018.  A Novel PUF based Logic Encryption Technique to Prevent SAT Attacks and Trojan Insertion. 2018 9th International Symposium on Telecommunications (IST). :507–513.
The manufacturing of integrated circuits (IC) outside of the design houses makes it possible for the adversary to easily perform a reverse engineering attack against intellectual property (IP)/IC. The aim of this attack can be the IP piracy, overproduction, counterfeiting or inserting hardware Trojan (HT) throughout the supply chain of the IC. Preventing hardware Trojan insertion is a significant issue in the context of hardware security (HS) and has not been considered in most of the previous logic encryption methods. To eliminate this problem, in this paper an Anti-Trojan insertion algorithm is presented. The idea is based on the fact that reducing the signals with low-observability (LO) and low-controllability (LC) can prevent HT insertion significantly. The security of logic encryption methods depends on the algorithm and the encryption key. However, the security of these methods has been compromised by SAT attacks over recent years. SAT attacks, can decode the correct key from most logic encryption techniques. In this article, by using the PUF-based encryption, the applied key in the encryption is randomized and SAT attack cannot be performed. Based on the output of PUF, a unique encryption has been made for each chip that preventing from counterfeiting and IP piracy.
Kemp, C., Calvert, C., Khoshgoftaar, T..  2018.  Utilizing Netflow Data to Detect Slow Read Attacks. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :108–116.
Attackers can leverage several techniques to compromise computer networks, ranging from sophisticated malware to DDoS (Distributed Denial of Service) attacks that target the application layer. Application layer DDoS attacks, such as Slow Read, are implemented with just enough traffic to tie up CPU or memory resources causing web and application servers to go offline. Such attacks can mimic legitimate network requests making them difficult to detect. They also utilize less volume than traditional DDoS attacks. These low volume attack methods can often go undetected by network security solutions until it is too late. In this paper, we explore the use of machine learners for detecting Slow Read DDoS attacks on web servers at the application layer. Our approach uses a generated dataset based upon Netflow data collected at the application layer on a live network environment. Our Netflow data uses the IP Flow Information Export (IPFIX) standard providing significant flexibility and features. These Netflow features can process and handle a growing amount of traffic and have worked well in our previous DDoS work detecting evasion techniques. Our generated dataset consists of real-world network data collected from a production network. We use eight different classifiers to build Slow Read attack detection models. Our wide selection of learners provides us with a more comprehensive analysis of Slow Read detection models. Experimental results show that the machine learners were quite successful in identifying the Slow Read attacks with a high detection and low false alarm rate. The experiment demonstrates that our chosen Netflow features are discriminative enough to detect such attacks accurately.
2020-11-04
Apruzzese, G., Colajanni, M., Ferretti, L., Marchetti, M..  2019.  Addressing Adversarial Attacks Against Security Systems Based on Machine Learning. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1—18.

Machine-learning solutions are successfully adopted in multiple contexts but the application of these techniques to the cyber security domain is complex and still immature. Among the many open issues that affect security systems based on machine learning, we concentrate on adversarial attacks that aim to affect the detection and prediction capabilities of machine-learning models. We consider realistic types of poisoning and evasion attacks targeting security solutions devoted to malware, spam and network intrusion detection. We explore the possible damages that an attacker can cause to a cyber detector and present some existing and original defensive techniques in the context of intrusion detection systems. This paper contains several performance evaluations that are based on extensive experiments using large traffic datasets. The results highlight that modern adversarial attacks are highly effective against machine-learning classifiers for cyber detection, and that existing solutions require improvements in several directions. The paper paves the way for more robust machine-learning-based techniques that can be integrated into cyber security platforms.

Flores, P..  2019.  Digital Simulation in the Virtual World: Its Effect in the Knowledge and Attitude of Students Towards Cybersecurity. 2019 Sixth HCT Information Technology Trends (ITT). :1—5.

The search for alternative delivery modes to teaching has been one of the pressing concerns of numerous educational institutions. One key innovation to improve teaching and learning is e-learning which has undergone enormous improvements. From its focus on text-based environment, it has evolved into Virtual Learning Environments (VLEs) which provide more stimulating and immersive experiences among learners and educators. An example of VLEs is the virtual world which is an emerging educational platform among universities worldwide. One very interesting topic that can be taught using the virtual world is cybersecurity. Simulating cybersecurity in the virtual world may give a realistic experience to students which can be hardly achieved by classroom teaching. To date, there are quite a number of studies focused on cybersecurity awareness and cybersecurity behavior. But none has focused looking into the effect of digital simulation in the virtual world, as a new educational platform, in the cybersecurity attitude of the students. It is in this regard that this study has been conducted by designing simulation in the virtual world lessons that teaches the five aspects of cybersecurity namely; malware, phishing, social engineering, password usage and online scam, which are the most common cybersecurity issues. The study sought to examine the effect of this digital simulation design in the cybersecurity knowledge and attitude of the students. The result of the study ascertains that students exposed under simulation in the virtual world have a greater positive change in cybersecurity knowledge and attitude than their counterparts.

2020-11-02
Lin, Chun-Yu, Huang, Juinn-Dar, Yao, Hailong, Ho, Tsung-Yi.  2018.  A Comprehensive Security System for Digital Microfluidic Biochips. 2018 IEEE International Test Conference in Asia (ITC-Asia). :151—156.

Digital microfluidic biochips (DMFBs) have become popular in the healthcare industry recently because of its lowcost, high-throughput, and portability. Users can execute the experiments on biochips with high resolution, and the biochips market therefore grows significantly. However, malicious attackers exploit Intellectual Property (IP) piracy and Trojan attacks to gain illegal profits. The conventional approaches present defense mechanisms that target either IP piracy or Trojan attacks. In practical, DMFBs may suffer from the threat of being attacked by these two attacks at the same time. This paper presents a comprehensive security system to protect DMFBs from IP piracy and Trojan attacks. We propose an authentication mechanism to protect IP and detect errors caused by Trojans with CCD cameras. By our security system, we could generate secret keys for authentication and determine whether the bioassay is under the IP piracy and Trojan attacks. Experimental results demonstrate the efficacy of our security system without overhead of the bioassay completion time.

Qin, Maoyuan, Hu, Wei, Mu, Dejun, Tai, Yu.  2018.  Property Based Formal Security Verification for Hardware Trojan Detection. 2018 IEEE 3rd International Verification and Security Workshop (IVSW). :62—67.

The design of modern computer hardware heavily relies on third-party intellectual property (IP) cores, which may contain malicious hardware Trojans that could be exploited by an adversary to leak secret information or take control of the system. Existing hardware Trojan detection methods either require a golden reference design for comparison or extensive functional testing to identify suspicious signals. In this paper, we propose a new formal verification method to verify the security of hardware designs. The proposed solution formalizes fine grained gate level information flow model for proving security properties of hardware designs in the Coq theorem prover environment. Compare with existing register transfer level (RTL) information flow security models, our model only needs to translate a small number of logic primitives to their formal representations without the need of supporting the rich RTL HDL semantics or dealing with complex conditional branch or loop structures. As a result, a gate level information flow model can be created at much lower complexity while achieving significantly higher precision in modeling the security behavior of hardware designs. We use the AES-T1700 benchmark from Trust-HUB to demonstrate the effectiveness of our solution. Experimental results show that our method can detect and pinpoint the Trojan.

2020-10-30
Basu, Kanad, Elnaggar, Rana, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  PREEMPT: PReempting Malware by Examining Embedded Processor Traces. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Anti-virus software (AVS) tools are used to detect Malware in a system. However, software-based AVS are vulnerable to attacks. A malicious entity can exploit these vulnerabilities to subvert the AVS. Recently, hardware components such as Hardware Performance Counters (HPC) have been used for Malware detection. In this paper, we propose PREEMPT, a zero overhead, high-accuracy and low-latency technique to detect Malware by re-purposing the embedded trace buffer (ETB), a debug hardware component available in most modern processors. The ETB is used for post-silicon validation and debug and allows us to control and monitor the internal activities of a chip, beyond what is provided by the Input/Output pins. PREEMPT combines these hardware-level observations with machine learning-based classifiers to preempt Malware before it can cause damage. There are many benefits of re-using the ETB for Malware detection. It is difficult to hack into hardware compared to software, and hence, PREEMPT is more robust against attacks than AVS. PREEMPT does not incur performance penalties. Finally, PREEMPT has a high True Positive value of 94% and maintains a low False Positive value of 2%.

2020-10-29
Vi, Bao Ngoc, Noi Nguyen, Huu, Nguyen, Ngoc Tran, Truong Tran, Cao.  2019.  Adversarial Examples Against Image-based Malware Classification Systems. 2019 11th International Conference on Knowledge and Systems Engineering (KSE). :1—5.

Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.

Xylogiannopoulos, Konstantinos F., Karampelas, Panagiotis, Alhajj, Reda.  2019.  Text Mining for Malware Classification Using Multivariate All Repeated Patterns Detection. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :887—894.

Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.

Choi, Seok-Hwan, Shin, Jin-Myeong, Liu, Peng, Choi, Yoon-Ho.  2019.  Robustness Analysis of CNN-based Malware Family Classification Methods Against Various Adversarial Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :1—6.

As malware family classification methods, image-based classification methods have attracted much attention. Especially, due to the fast classification speed and the high classification accuracy, Convolutional Neural Network (CNN)-based malware family classification methods have been studied. However, previous studies on CNN-based classification methods focused only on improving the classification accuracy of malware families. That is, previous studies did not consider the cases that the accuracy of CNN-based malware classification methods can be decreased under the existence of adversarial attacks. In this paper, we analyze the robustness of various CNN-based malware family classification models under adversarial attacks. While adding imperceptible non-random perturbations to the input image, we measured how the accuracy of the CNN-based malware family classification model can be affected. Also, we showed the influence of three significant visualization parameters(i.e., the size of input image, dimension of input image, and conversion color of a special character)on the accuracy variation under adversarial attacks. From the evaluation results using the Microsoft malware dataset, we showed that even the accuracy over 98% of the CNN-based malware family classification method can be decreased to less than 7%.

Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

Priyamvada Davuluru, Venkata Salini, Narayanan Narayanan, Barath, Balster, Eric J..  2019.  Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :273—278.

Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.

Wei, Qu, Xiao, Shi, Dongbao, Li.  2019.  Malware Classification System Based on Machine Learning. 2019 Chinese Control And Decision Conference (CCDC). :647—652.

The main challenge for malware researchers is the large amount of data and files that need to be evaluated for potential threats. Researchers analyze a large number of new malware daily and classify them in order to extract common features. Therefore, a system that can ensure and improve the efficiency and accuracy of the classification is of great significance for the study of malware characteristics. A high-performance, high-efficiency automatic classification system based on multi-feature selection fusion of machine learning is proposed in this paper. Its performance and efficiency, according to our experiments, have been greatly improved compared to single-featured systems.

Mahajan, Ginika, Saini, Bhavna, Anand, Shivam.  2019.  Malware Classification Using Machine Learning Algorithms and Tools. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—8.

Malware classification is the process of categorizing the families of malware on the basis of their signatures. This work focuses on classifying the emerging malwares on the basis of comparable features of similar malwares. This paper proposes a novel framework that categorizes malware samples into their families and can identify new malware samples for analysis. For this six diverse classification techniques of machine learning are used. To get more comparative and thus accurate classification results, analysis is done using two different tools, named as Knime and Orange. The work proposed can help in identifying and thus cleaning new malwares and classifying malware into their families. The correctness of family classification of malwares is investigated in terms of confusion matrix, accuracy and Cohen's Kappa. After evaluation it is analyzed that Random Forest gives the highest accuracy.

Tran, Trung Kien, Sato, Hiroshi, Kubo, Masao.  2019.  Image-Based Unknown Malware Classification with Few-Shot Learning Models. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :401—407.

Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.

Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

Jiang, Jianguo, Li, Song, Yu, Min, Li, Gang, Liu, Chao, Chen, Kai, Liu, Hui, Huang, Weiqing.  2019.  Android Malware Family Classification Based on Sensitive Opcode Sequence. 2019 IEEE Symposium on Computers and Communications (ISCC). :1—7.

Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.

2020-10-26
Black, Paul, Gondal, Iqbal, Vamplew, Peter, Lakhotia, Arun.  2019.  Evolved Similarity Techniques in Malware Analysis. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :404–410.

Malware authors are known to reuse existing code, this development process results in software evolution and a sequence of versions of a malware family containing functions that show a divergence from the initial version. This paper proposes the term evolved similarity to account for this gradual divergence of similarity across the version history of a malware family. While existing techniques are able to match functions in different versions of malware, these techniques work best when the version changes are relatively small. This paper introduces the concept of evolved similarity and presents automated Evolved Similarity Techniques (EST). EST differs from existing malware function similarity techniques by focusing on the identification of significantly modified functions in adjacent malware versions and may also be used to identify function similarity in malware samples that differ by several versions. The challenge in identifying evolved malware function pairs lies in identifying features that are relatively invariant across evolved code. The research in this paper makes use of the function call graph to establish these features and then demonstrates the use of these techniques using Zeus malware.

Li, Huhua, Zhan, Dongyang, Liu, Tianrui, Ye, Lin.  2019.  Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :1–6.
Malware is one of the biggest threats in cloud computing. Malware running inside virtual machines or containers could steal critical information or continue to attack other cloud nodes. To detect malware in cloud, especially zero-day malware, signature-and machine-learning-based approaches are proposed to analyze the execution binary. However, malicious binary files may not permanently be stored in the file system of virtual machine or container, periodically scanner may not find the target files. Dynamic analysis approach usually introduce run-time overhead to virtual machines, which is not widely used in cloud. To solve these problems, we propose a memory analysis approach to detect malware, employing the deep learning technology. The system analyzes the memory image periodically during malware execution, which will not introduce run-time overhead. We first extract the memory snapshot from running virtual machines or containers. Then, the snapshot is converted to a grayscale image. Finally, we employ CNN to detect malware. In the learning phase, malicious and benign software are trained. In the testing phase, we test our system with real-world malwares.
Leach, Kevin, Dougherty, Ryan, Spensky, Chad, Forrest, Stephanie, Weimer, Westley.  2019.  Evolutionary Computation for Improving Malware Analysis. 2019 IEEE/ACM International Workshop on Genetic Improvement (GI). :18–19.
Research in genetic improvement (GI) conventionally focuses on the improvement of software, including the automated repair of bugs and vulnerabilities as well as the refinement of software to increase performance. Eliminating or reducing vulnerabilities using GI has improved the security of benign software, but the growing volume and complexity of malicious software necessitates better analysis techniques that may benefit from a GI-based approach. Rather than focus on the use of GI to improve individual software artifacts, we believe GI can be applied to the tools used to analyze malicious code for its behavior. First, malware analysis is critical to understanding the damage caused by an attacker, which GI-based bug repair does not currently address. Second, modern malware samples leverage complex vectors for infection that cannot currently be addressed by GI. In this paper, we discuss an application of genetic improvement to the realm of automated malware analysis through the use of variable-strength covering arrays.
Sethi, Kamalakanta, Kumar, Rahul, Sethi, Lingaraj, Bera, Padmalochan, Patra, Prashanta Kumar.  2019.  A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–4.
As time progresses, new and complex malware types are being generated which causes a serious threat to computer systems. Due to this drastic increase in the number of malware samples, the signature-based malware detection techniques cannot provide accurate results. Different studies have demonstrated the proficiency of machine learning for the detection and classification of malware files. Further, the accuracy of these machine learning models can be improved by using feature selection algorithms to select the most essential features and reducing the size of the dataset which leads to lesser computations. In this paper, we have developed a machine learning based malware analysis framework for efficient and accurate malware detection and classification. We used Cuckoo sandbox for dynamic analysis which executes malware in an isolated environment and generates an analysis report based on the system activities during execution. Further, we propose a feature extraction and selection module which extracts features from the report and selects the most important features for ensuring high accuracy at minimum computation cost. Then, we employ different machine learning algorithms for accurate detection and fine-grained classification. Experimental results show that we got high detection and classification accuracy in comparison to the state-of-the-art approaches.
Clincy, Victor, Shahriar, Hossain.  2019.  IoT Malware Analysis. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:920–921.
IoT devices can be used to fulfil many of our daily tasks. IoT could be wearable devices, home appliances, or even light bulbs. With the introduction of this new technology, however, vulnerabilities are being introduced and can be leveraged or exploited by malicious users. One common vehicle of exploitation is malicious software, or malware. Malware can be extremely harmful and compromise the confidentiality, integrity and availability (CIA triad) of information systems. This paper analyzes the types of malware attacks, introduce some mitigation approaches and discusses future challenges.