Biblio
Cloud computing (CC) systems prevail to be the widespread computational paradigms for offering immense scalable and elastic services. Computing resources in cloud environment should be scheduled to facilitate the providers to utilize the resources moreover the users could get low cost applications. The most prominent need in job scheduling is to ensure Quality of service (QoS) to the user. In the boundary of the third party the scheduling takes place hence it is a significant condition for assuring its security. The main objective of our work is to offer QoS i.e. cost, makespan, minimized migration of task with security enforcement moreover the proposed algorithm guarantees that the admitted requests are executed without violating service level agreement (SLA). These objectives are attained by the proposed Fuzzy Ant Bee Colony algorithm. The experimental outcome confirms that secured job scheduling objective with assured QoS is attained by the proposed algorithm.
Robots are networks of a variety of computing devices, such as powerful computing platforms but also tiny microcontrollers. The Robot Operating System (ROS) is the dominant framework for powerful computing devices. While ROS version 2 adds important features like quality of service and security, it cannot be directly applied to microcontrollers because of its large memory footprint. The micro-ROS project has ported the ROS 2 API to microcontrollers. However, the standard ROS 2 concepts are not enough for real-time performance: In the ROS 2 release “Foxy”, the standard ROS 2 Executor, which is the central component responsible for handling timers and incoming message data, is neither real-time capable nor deterministic. Domain-specific requirements of mobile robots, like sense-plan-act control loops, cannot be addressed with the standard ROS 2 Executor. In this paper, we present an advanced Executor for the ROS 2 C API which provides deterministic scheduling and supports domain-specific requirements. A proof-of-concept is demonstrated on a 32-bit microcontroller.
Verifying complex Cyber-Physical Systems (CPS) is increasingly important given the push to deploy safety-critical autonomous features. Unfortunately, traditional verification methods do not scale to the complexity of these systems and do not provide systematic methods to protect verified properties when not all the components can be verified. To address these challenges, this paper proposes a real-time mixed-trust computing framework that combines verification and protection. The framework introduces a new task model, where an application task can have both an untrusted and a trusted part. The untrusted part allows complex computations supported by a full OS with a realtime scheduler running in a VM hosted by a trusted hypervisor. The trusted part is executed by another scheduler within the hypervisor and is thus protected from the untrusted part. If the untrusted part fails to finish by a specific time, the trusted part is activated to preserve safety (e.g., prevent a crash) including its timing guarantees. This framework is the first allowing the use of untrusted components for CPS critical functions while preserving logical and timing guarantees, even in the presence of malicious attackers. We present the framework design and implementation along with the schedulability analysis and the coordination protocol between the trusted and untrusted parts. We also present our Raspberry Pi 3 implementation along with experiments showing the behavior of the system under failures of untrusted components, and a drone application to demonstrate its practicality.
Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.
The high penetration of third-party intellectual property (3PIP) brings a high risk of malicious inclusions and data leakage in products due to the planted hardware Trojans, and system level security constraints have recently been proposed for MPSoCs protection against hardware Trojans. However, secret communication still can be established in the context of the proposed security constraints, and thus, another type of security constraints is also introduced to fully prevent such malicious inclusions. In addition, fulfilling the security constraints incurs serious overhead of schedule length, and a two-stage performance-constrained task scheduling algorithm is then proposed to maintain most of the security constraints. In the first stage, the schedule length is iteratively reduced by assigning sets of adjacent tasks into the same core after calculating the maximum weight independent set of a graph consisting of all timing critical paths. In the second stage, tasks are assigned to proper IP vendors and scheduled to time periods with a minimization of cores required. The experimental results show that our work reduces the schedule length of a task graph, while only a small number of security constraints are violated.
Localizing concurrency faults that occur in production is hard because, (1) detailed field data, such as user input, file content and interleaving schedule, may not be available to developers to reproduce the failure; (2) it is often impractical to assume the availability of multiple failing executions to localize the faults using existing techniques; (3) it is challenging to search for buggy locations in an application given limited runtime data; and, (4) concurrency failures at the system level often involve multiple processes or event handlers (e.g., software signals), which can not be handled by existing tools for diagnosing intra-process(thread-level) failures. To address these problems, we present SCMiner, a practical online bug diagnosis tool to help developers understand how a system-level concurrency fault happens based on the logs collected by the default system audit tools. SCMiner achieves online bug diagnosis to obviate the need for offline bug reproduction. SCMiner does not require code instrumentation on the production system or rely on the assumption of the availability of multiple failing executions. Specifically, after the system call traces are collected, SCMiner uses data mining and statistical anomaly detection techniques to identify the failure-inducing system call sequences. It then maps each abnormal sequence to specific application functions. We have conducted an empirical study on 19 real-world benchmarks. The results show that SCMiner is both effective and efficient at localizing system-level concurrency faults.
Mixed-criticality scheduling theory (MCSh) was developed to allow for more resource-efficient implementation of systems comprising different components that need to have their correctness validated at different levels of assurance. As originally defined, MCSh deals exclusively with pre-runtime verification of such systems; hence many mixed-criticality scheduling algorithms that have been developed tend to exhibit rather poor survivability characteristics during run-time. (E.g., MCSh allows for less-important (“Lo-criticality”) workloads to be completely discarded in the event that run-time behavior is not compliant with the assumptions under which the correctness of the LO-criticality workload should be verified.) Here we seek to extend MCSh to incorporate survivability considerations, by proposing quantitative metrics for the robustness and resilience of mixed-criticality scheduling algorithms. Such metrics allow us to make quantitative assertions regarding the survivability characteristics of mixed-criticality scheduling algorithms, and to compare different algorithms from the perspective of their survivability. We propose that MCSh seek to develop scheduling algorithms that possess superior survivability characteristics, thereby obtaining algorithms with better survivability properties than current ones (which, since they have been developed within a survivability-agnostic framework, tend to focus exclusively on pre-runtime verification and ignore survivability issues entirely).
The National Airspace System (NAS), as a portion of the US' transportation system, has not yet begun to model or adopt integration of Artificial Intelligence (AI) technology. However, users of the NAS, i.e., Air transport operators, UAS operators, etc. are beginning to use this technology throughout their operations. At issue within the broader aviation marketplace, is the continued search for a solution set to the persistent daily delays and schedule perturbations that occur within the NAS. Despite billions invested through the NAS Modernization Program, the delays persist in the face of reduced demand for commercial routings. Every delay represents an economic loss to commercial transport operators, passengers, freighters, and any business depending on the transportation performance. Therefore, the FAA needs to begin to address from an advanced concepts perspective, what this wave of new technology will affect as it is brought to bear on various operations performance parameters, including safety, security, efficiency, and resiliency solution sets. This paper is the first in a series of papers we are developing to explore the application of AI in the National Airspace System (NAS). This first paper is meant to get everyone in the aviation community on the same page, a primer if you will, to start the technical discussions. This paper will define AI; the capabilities associated with AI; current use cases within the aviation ecosystem; and how to prepare for insertion of AI in the NAS. The next series of papers will look at NAS Operations Theory utilizing AI capabilities and eventually leading to a future intelligent NAS (iNAS) environment.
CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.