Visible to the public Biblio

Found 365 results

Filters: Keyword is Support vector machines  [Clear All Filters]
2020-02-26
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.

Sokolov, S. A., Iliev, T. B., Stoyanov, I. S..  2019.  Analysis of Cybersecurity Threats in Cloud Applications Using Deep Learning Techniques. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :441–446.

In this paper we present techniques based on machine learning techniques on monitoring data for analysis of cybersecurity threats in cloud environments that incorporate enterprise applications from the fields of telecommunications and IoT. Cybersecurity is a term describing techniques for protecting computers, telecommunications equipment, applications, environments and data. In modern networks enormous volume of generated traffic can be observed. We propose several techniques such as Support Vector Machines, Neural networks and Deep Neural Networks in combination for analysis of monitoring data. An approach for combining classifier results based on performance weights is proposed. The proposed approach delivers promising results comparable to existing algorithms and is suitable for enterprise grade security applications.

2020-02-10
Hu, Taifeng, Wu, Liji, Zhang, Xiangmin, Yin, Yanzhao, Yang, Yijun.  2019.  Hardware Trojan Detection Combine with Machine Learning: an SVM-based Detection Approach. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :202–206.
With the application of integrated circuits (ICs) appears in all aspects of life, whether an IC is security and reliable has caused increasing worry which is of significant necessity. An attacker can achieve the malicious purpose by adding or removing some modules, so called hardware Trojans (HTs). In this paper, we use side-channel analysis (SCA) and support vector machine (SVM) classifier to determine whether there is a Trojan in the circuit. We use SAKURA-G circuit board with Xilinx SPARTAN-6 to complete our experiment. Results show that the Trojan detection rate is up to 93% and the classification accuracy is up to 91.8475%.
Gao, Hongcan, Zhu, Jingwen, Liu, Lei, Xu, Jing, Wu, Yanfeng, Liu, Ao.  2019.  Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior Mining. 2019 IEEE International Conference on Energy Internet (ICEI). :493–498.
SQL injection attacks are a kind of the greatest security risks on Web applications. Much research has been done to detect SQL injection attacks by rule matching and syntax tree. However, due to the complexity and variety of SQL injection vulnerabilities, these approaches fail to detect unknown and variable SQL injection attacks. In this paper, we propose a model, ATTAR, to detect SQL injection attacks using grammar pattern recognition and access behavior mining. The most important idea of our model is to extract and analyze features of SQL injection attacks in Web access logs. To achieve this goal, we first extract and customize Web access log fields from Web applications. Then we design a grammar pattern recognizer and an access behavior miner to obtain the grammatical and behavioral features of SQL injection attacks, respectively. Finally, based on two feature sets, machine learning algorithms, e.g., Naive Bayesian, SVM, ID3, Random Forest, and K-means, are used to train and detect our model. We evaluated our model on these two feature sets, and the results show that the proposed model can effectively detect SQL injection attacks with lower false negative rate and false positive rate. In addition, comparing the accuracy of our model based on different algorithms, ID3 and Random Forest have a better ability to detect various kinds of SQL injection attacks.
Ishtiaq, Asra, Islam, Muhammad Arshad, Azhar Iqbal, Muhammad, Aleem, Muhammad, Ahmed, Usman.  2019.  Graph Centrality Based Spam SMS Detection. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :629–633.

Short messages usage has been tremendously increased such as SMS, tweets and status updates. Due to its popularity and ease of use, many companies use it for advertisement purpose. Hackers also use SMS to defraud users and steal personal information. In this paper, the use of Graphs centrality metrics is proposed for spam SMS detection. The graph centrality measures: degree, closeness, and eccentricity are used for classification of SMS. Graphs for each class are created using labeled SMS and then unlabeled SMS is classified using the centrality scores of the token available in the unclassified SMS. Our results show that highest precision and recall is achieved by using degree centrality. Degree centrality achieved the highest precision i.e. 0.81 and recall i.e., 0.76 for spam messages.

2020-01-28
Hou, Size, Huang, Xin.  2019.  Use of Machine Learning in Detecting Network Security of Edge Computing System. 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA). :252–256.

This study has built a simulation of a smart home system by the Alibaba ECS. The architecture of hardware was based on edge computing technology. The whole method would design a clear classifier to find the boundary between regular and mutation codes. It could be applied in the detection of the mutation code of network. The project has used the dataset vector to divide them into positive and negative type, and the final result has shown the RBF-function SVM method perform best in this mission. This research has got a good network security detection in the IoT systems and increased the applications of machine learning.

2020-01-27
Álvarez Almeida, Luis Alfredo, Carlos Martinez Santos, Juan.  2019.  Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System. 2019 IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI). :1–5.
The integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attacks like Denial of Service attacks. In this article, we will use all the attributes of the data-set NSL-KDD to train and test a Support Vector Machine model. This model will then be applied to a method of feature selection to obtain the most relevant attributes within the aforementioned data-set and train the model again. The main goal is comparing the results obtained in both instances of training and validate which was more efficient.
Taher, Kazi Abu, Mohammed Yasin Jisan, Billal, Rahman, Md. Mahbubur.  2019.  Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :643–646.
A novel supervised machine learning system is developed to classify network traffic whether it is malicious or benign. To find the best model considering detection success rate, combination of supervised learning algorithm and feature selection method have been used. Through this study, it is found that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperform support vector machine (SVM) technique while classifying network traffic. To evaluate the performance, NSL-KDD dataset is used to classify network traffic using SVM and ANN supervised machine learning techniques. Comparative study shows that the proposed model is efficient than other existing models with respect to intrusion detection success rate.
Zhang, Naiji, Jaafar, Fehmi, Malik, Yasir.  2019.  Low-Rate DoS Attack Detection Using PSD Based Entropy and Machine Learning. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :59–62.
The Distributed Denial of Service attack is one of the most common attacks and it is hard to mitigate, however, it has become more difficult while dealing with the Low-rate DoS (LDoS) attacks. The LDoS exploits the vulnerability of TCP congestion-control mechanism by sending malicious traffic at the low constant rate and influence the victim machine. Recently, machine learning approaches are applied to detect the complex DDoS attacks and improve the efficiency and robustness of the intrusion detection system. In this research, the algorithm is designed to balance the detection rate and its efficiency. The detection algorithm combines the Power Spectral Density (PSD) entropy function and Support Vector Machine to detect LDoS traffic from normal traffic. In our solution, the detection rate and efficiency are adjustable based on the parameter in the decision algorithm. To have high efficiency, the detection method will always detect the attacks by calculating PSD-entropy first and compare it with the two adaptive thresholds. The thresholds can efficiently filter nearly 19% of the samples with a high detection rate. To minimize the computational cost and look only for the patterns that are most relevant for detection, Support Vector Machine based machine learning model is applied to learn the traffic pattern and select appropriate features for detection algorithm. The experimental results show that the proposed approach can detect 99.19% of the LDoS attacks and has an O (n log n) time complexity in the best case.
Yang, Li-hua, Huang, Hua.  2019.  A Classification Method of Ancient Ceramics Based on Support Vector Machine in Ceramic Cloud Service Platform. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :108–112.
To efficiently provide the ancient ceramic composition analysis and testing services, it is necessary to efficiently classify the ancient ceramics in ceramic cloud service platform. In this paper, we get the 8 kinds of major chemical contents of the body and glaze in each sample according to analyze 35 samples. After establishing of the classification model of two samples, the results indicate: as long as choosing SVM algorithm correctly, the classification results of body and glaze samples will be quite ideal, and the support vector machine is a very valuable new method which can process ancient porcelains data.
Hsu, Hsiao-Tzu, Jong, Gwo-Jia, Chen, Jhih-Hao, Jhe, Ciou-Guo.  2019.  Improve Iot Security System Of Smart-Home By Using Support Vector Machine. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :674–677.
The traditional smart-home is designed to integrate the concept of the Internet of Things(IoT) into our home environment, and to improve the comfort of home. It connects electrical products and household goods to the network, and then monitors and controls them. However, this paper takes home safety as the main axis of research. It combines the past concept of smart-home and technology of machine learning to improve the whole system of smart-home. Through systematic self-learning, it automatically figure out whether it is normal or abnormal, and reports to remind building occupants safety. At the same time, it saves the cost of human resources preservation. This paper make a set of rules table as the basic criteria first, and then classify a part of data which collected by traditional Internet of Things of smart-home by manual way, which includes the opening and closing of doors and windows, the starting and stopping of motors, the connection and interruption of the system, and the time of sending each data to label, then use Support Vector Machine(SVM) algorithm to classify and build models, and then train it. The executed model is applied to our smart-home system. Finally, we verify the Accuracy of anomaly reporting in our system.
Reith, Robert Nikolai, Schneider, Thomas, Tkachenko, Oleksandr.  2019.  Efficiently Stealing your Machine Learning Models. Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society. :198–210.
Machine Learning as a Service (MLaaS) is a growing paradigm in the Machine Learning (ML) landscape. More and more ML models are being uploaded to the cloud and made accessible from all over the world. Creating good ML models, however, can be expensive and the used data is often sensitive. Recently, Secure Multi-Party Computation (SMPC) protocols for MLaaS have been proposed, which protect sensitive user data and ML models at the expense of substantially higher computation and communication than plaintext evaluation. In this paper, we show that for a subset of ML models used in MLaaS, namely Support Vector Machines (SVMs) and Support Vector Regression Machines (SVRs) which have found many applications to classifying multimedia data such as texts and images, it is possible for adversaries to passively extract the private models even if they are protected by SMPC, using known and newly devised model extraction attacks. We show that our attacks are not only theoretically possible but also practically feasible and cheap, which makes them lucrative to financially motivated attackers such as competitors or customers. We perform model extraction attacks on the homomorphic encryption-based protocol for privacy-preserving SVR-based indoor localization by Zhang et al. (International Workshop on Security 2016). We show that it is possible to extract a highly accurate model using only 854 queries with the estimated cost of \$0.09 on the Amazon ML platform, and our attack would take only 7 minutes over the Internet. Also, we perform our model extraction attacks on SVM and SVR models trained on publicly available state-of-the-art ML datasets.
Ma, Congjun, Wang, Haipeng, Zhao, Tao, Dian, Songyi.  2019.  Weighted LS-SVMR-Based System Identification with Outliers. Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering. :1–6.
Plenty of methods applied in system identification, while those based on data-driven are increasingly popular. Usually we ignore the absence of outliers among the system to be modeled, but it is unreachable in reality. To improve the precision of identification towards system with outliers, advantageous approaches with robustness are needed. This study analyzes the superiority of weighted Least Square Support Vector Machine Regression (LS-SVMR) in the field of system identification under random outliers, and compare it with LS-SVMR mainly.
Rocamora, Josyl Mariela, Ho, Ivan Wang-Hei, Mak, Man-Wai.  2019.  Fingerprint Quality Classification for CSI-based Indoor Positioning Systems. Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in the IoT Era. :31–36.
Recent indoor positioning systems that utilize channel state information (CSI) consider ideal scenarios to achieve high-accuracy performance in fingerprint matching. However, one essential component in achieving high accuracy is the collection of high-quality fingerprints. The quality of fingerprints may vary due to uncontrollable factors such as environment noise, interference, and hardware instability. In our paper, we propose a method for collecting high-quality fingerprints for indoor positioning. First, we have developed a logistic regression classifier based on gradient descent to evaluate the quality of the collected channel frequency response (CFR) samples. We employ the classifier to sift out poor CFR samples and only retain good ones as input to the positioning system. We discover that our classifier can achieve high classification accuracy from over thousands of CFR samples. We then evaluate the positioning accuracy based on two techniques: Time-Reversal Resonating Strength (TRRS) and Support Vector Machines (SVM). We find that the sifted fingerprints always result in better positioning performance. For example, an average percentage improvement of 114% for TRRS and 22% for SVM compared to that of unsifted fingerprints of the same 40-MHz effective bandwidth.
Becattini, Federico, Ferracani, Andrea, Principi, Filippo, Ghianni, Marioemanuele, Del Bimbo, Alberto.  2019.  NeuronUnityIntegration2.0. A Unity Based Application for Motion Capture and Gesture Recognition. Proceedings of the 27th ACM International Conference on Multimedia. :2199–2201.
NeuronUnityIntgration2.0 (demo video is avilable at http://tiny.cc/u1lz6y) is a plugin for Unity which provides gesture recognition functionalities through the Perception Neuron motion capture suit. The system offers a recording mode, which guides the user through the collection of a dataset of gestures, and a recognition mode, capable of detecting the recorded actions in real time. Gestures are recognized by training Support Vector Machines directly within our plugin. We demonstrate the effectiveness of our application through an experimental evaluation on a newly collected dataset. Furthermore, external applications can exploit NeuronUnityIntgration2.0's recognition capabilities thanks to a set of exposed API.
Lundberg, Lars, Lennerstad, Håkan, Boeva, Veselka, García-Martín, Eva.  2019.  Handling Non-linear Relations in Support Vector Machines through Hyperplane Folding. Proceedings of the 2019 11th International Conference on Machine Learning and Computing. :137–141.
We present a new method, called hyperplane folding, that increases the margin in Support Vector Machines (SVMs). Based on the location of the support vectors, the method splits the dataset into two parts, rotates one part of the dataset and then merges the two parts again. This procedure increases the margin as long as the margin is smaller than half of the shortest distance between any pair of data points from the two different classes. We provide an algorithm for the general case with n-dimensional data points. A small experiment with three folding iterations on 3-dimensional data points with non-linear relations shows that the margin does indeed increase and that the accuracy improves with a larger margin. The method can use any standard SVM implementation plus some basic manipulation of the data points, i.e., splitting, rotating and merging. Hyperplane folding also increases the interpretability of the data.
2020-01-21
Aldairi, Maryam, Karimi, Leila, Joshi, James.  2019.  A Trust Aware Unsupervised Learning Approach for Insider Threat Detection. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :89–98.

With the rapidly increasing connectivity in cyberspace, Insider Threat is becoming a huge concern. Insider threat detection from system logs poses a tremendous challenge for human analysts. Analyzing log files of an organization is a key component of an insider threat detection and mitigation program. Emerging machine learning approaches show tremendous potential for performing complex and challenging data analysis tasks that would benefit the next generation of insider threat detection systems. However, with huge sets of heterogeneous data to analyze, applying machine learning techniques effectively and efficiently to such a complex problem is not straightforward. In this paper, we extract a concise set of features from the system logs while trying to prevent loss of meaningful information and providing accurate and actionable intelligence. We investigate two unsupervised anomaly detection algorithms for insider threat detection and draw a comparison between different structures of the system logs including daily dataset and periodically aggregated one. We use the generated anomaly score from the previous cycle as the trust score of each user fed to the next period's model and show its importance and impact in detecting insiders. Furthermore, we consider the psychometric score of users in our model and check its effectiveness in predicting insiders. As far as we know, our model is the first one to take the psychometric score of users into consideration for insider threat detection. Finally, we evaluate our proposed approach on CERT insider threat dataset (v4.2) and show how it outperforms previous approaches.

Aljamal, Ibraheem, Tekeo\u glu, Ali, Bekiroglu, Korkut, Sengupta, Saumendra.  2019.  Hybrid Intrusion Detection System Using Machine Learning Techniques in Cloud Computing Environments. 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA). :84–89.

Intrusion detection is one essential tool towards building secure and trustworthy Cloud computing environment, given the ubiquitous presence of cyber attacks that proliferate rapidly and morph dynamically. In our current working paradigm of resource, platform and service consolidations, Cloud Computing provides a significant improvement in the cost metrics via dynamic provisioning of IT services. Since almost all cloud computing networks lean on providing their services through Internet, they are prone to experience variety of security issues. Therefore, in cloud environments, it is necessary to deploy an Intrusion Detection System (IDS) to detect new and unknown attacks in addition to signature based known attacks, with high accuracy. In our deliberation we assume that a system or a network ``anomalous'' event is synonymous to an ``intrusion'' event when there is a significant departure in one or more underlying system or network activities. There are couple of recently proposed ideas that aim to develop a hybrid detection mechanism, combining advantages of signature-based detection schemes with the ability to detect unknown attacks based on anomalies. In this work, we propose a network based anomaly detection system at the Cloud Hypervisor level that utilizes a hybrid algorithm: a combination of K-means clustering algorithm and SVM classification algorithm, to improve the accuracy of the anomaly detection system. Dataset from UNSW-NB15 study is used to evaluate the proposed approach and results are compared with previous studies. The accuracy for our proposed K-means clustering model is slightly higher than others. However, the accuracy we obtained from the SVM model is still low for supervised techniques.

2020-01-20
Yihunie, Fekadu, Abdelfattah, Eman, Regmi, Amish.  2019.  Applying Machine Learning to Anomaly-Based Intrusion Detection Systems. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–5.

The enormous growth of Internet-based traffic exposes corporate networks with a wide variety of vulnerabilities. Intrusive traffics are affecting the normal functionality of network's operation by consuming corporate resources and time. Efficient ways of identifying, protecting, and mitigating from intrusive incidents enhance productivity. As Intrusion Detection System (IDS) is hosted in the network and at the user machine level to oversee the malicious traffic in the network and at the individual computer, it is one of the critical components of a network and host security. Unsupervised anomaly traffic detection techniques are improving over time. This research aims to find an efficient classifier that detects anomaly traffic from NSL-KDD dataset with high accuracy level and minimal error rate by experimenting with five machine learning techniques. Five binary classifiers: Stochastic Gradient Decent, Random Forests, Logistic Regression, Support Vector Machine, and Sequential Model are tested and validated to produce the result. The outcome demonstrates that Random Forest Classifier outperforms the other four classifiers with and without applying the normalization process to the dataset.

Halimaa A., Anish, Sundarakantham, K..  2019.  Machine Learning Based Intrusion Detection System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :916–920.

In order to examine malicious activity that occurs in a network or a system, intrusion detection system is used. Intrusion Detection is software or a device that scans a system or a network for a distrustful activity. Due to the growing connectivity between computers, intrusion detection becomes vital to perform network security. Various machine learning techniques and statistical methodologies have been used to build different types of Intrusion Detection Systems to protect the networks. Performance of an Intrusion Detection is mainly depends on accuracy. Accuracy for Intrusion detection must be enhanced to reduce false alarms and to increase the detection rate. In order to improve the performance, different techniques have been used in recent works. Analyzing huge network traffic data is the main work of intrusion detection system. A well-organized classification methodology is required to overcome this issue. This issue is taken in proposed approach. Machine learning techniques like Support Vector Machine (SVM) and Naïve Bayes are applied. These techniques are well-known to solve the classification problems. For evaluation of intrusion detection system, NSL- KDD knowledge discovery Dataset is taken. The outcomes show that SVM works better than Naïve Bayes. To perform comparative analysis, effective classification methods like Support Vector Machine and Naive Bayes are taken, their accuracy and misclassification rate get calculated.

2019-12-30
Heydari, Mohammad, Mylonas, Alexios, Katos, Vasilios, Balaguer-Ballester, Emili, Tafreshi, Vahid Heydari Fami, Benkhelifa, Elhadj.  2019.  Uncertainty-Aware Authentication Model for Fog Computing in IoT. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :52–59.

Since the term “Fog Computing” has been coined by Cisco Systems in 2012, security and privacy issues of this promising paradigm are still open challenges. Among various security challenges, Access Control is a crucial concern for all cloud computing-like systems (e.g. Fog computing, Mobile edge computing) in the IoT era. Therefore, assigning the precise level of access in such an inherently scalable, heterogeneous and dynamic environment is not easy to perform. This work defines the uncertainty challenge for authentication phase of the access control in fog computing because on one hand fog has a number of characteristics that amplify uncertainty in authentication and on the other hand applying traditional access control models does not result in a flexible and resilient solution. Therefore, we have proposed a novel prediction model based on the extension of Attribute Based Access Control (ABAC) model. Our data-driven model is able to handle uncertainty in authentication. It is also able to consider the mobility of mobile edge devices in order to handle authentication. In doing so, we have built our model using and comparing four supervised classification algorithms namely as Decision Tree, Naïve Bayes, Logistic Regression and Support Vector Machine. Our model can achieve authentication performance with 88.14% accuracy using Logistic Regression.

Taha, Bilal, Hatzinakos, Dimitrios.  2019.  Emotion Recognition from 2D Facial Expressions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1–4.
This work proposes an approach to find and learn informative representations from 2 dimensional gray-level images for facial expression recognition application. The learned features are obtained from a designed convolutional neural network (CNN). The developed CNN enables us to learn features from the images in a highly efficient manner by cascading different layers together. The developed model is computationally efficient since it does not consist of a huge number of layers and at the same time it takes into consideration the overfitting problem. The outcomes from the developed CNN are compared to handcrafted features that span texture and shape features. The experiments conducted on the Bosphours database show that the developed CNN model outperforms the handcrafted features when coupled with a Support Vector Machines (SVM) classifier.
2019-12-18
Mohan, K Manju.  2018.  An Efficient system to stumble on and Mitigate DDoS attack in cloud Environment. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1855–1857.
Cloud computing is an assured progression inside the future of facts generation. It's far a sub-domain of network security. These days, many huge or small organizations are switching to cloud which will shop and arrange their facts. As a result, protection of cloud networks is the want of the hour. DDoS is a killer software for cloud computing environments on net today. It is a distributed denial of carrier. we will beat the ddos attacks if we have the enough assets. ddos attacks can be countered by means of dynamic allocation of the assets. In this paper the attack is detected as early as possible and prevention methods is done and also mitigation method is also implemented thus attack can be avoided before it may occur.
2019-11-12
Ferenc, Rudolf, Heged\H us, Péter, Gyimesi, Péter, Antal, Gábor, Bán, Dénes, Gyimóthy, Tibor.  2019.  Challenging Machine Learning Algorithms in Predicting Vulnerable JavaScript Functions. 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). :8-14.

The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.

2019-11-04
Ramachandran, Raji, Nidhin, R, Shogil, P P.  2018.  Anomaly Detection in Role Administered Relational Databases — A Novel Method. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :1017–1021.
A significant amount of attempt has been lately committed for the progress of Database Management Systems (DBMS) that ensures high assertion and high security. Common security measures for database like access control measures, validation, encryption technologies, etc are not sufficient enough to secure the data from all the threats. By using an anomaly detection system, we are able to enhance the security feature of the Database management system. We are taking an assumption that the database access control is role based. In this paper, a mechanism is proposed for finding the anomaly in database by using machine learning technique such as classification. The importance of providing anomaly detection technique to a Role-Based Access Control database is that it will help for the protection against the insider attacks. The experimentation results shows that the system is able to detect intrusion effectively with high accuracy and high F1-score.