Visible to the public Biblio

Found 148 results

Filters: Keyword is Companies  [Clear All Filters]
2019-12-16
Xue, Zijun, Ko, Ting-Yu, Yuchen, Neo, Wu, Ming-Kuang Daniel, Hsieh, Chu-Cheng.  2018.  Isa: Intuit Smart Agent, A Neural-Based Agent-Assist Chatbot. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :1423–1428.
Hiring seasonal workers in call centers to provide customer service is a common practice in B2C companies. The quality of service delivered by both contracting and employee customer service agents depends heavily on the domain knowledge available to them. When observing the internal group messaging channels used by agents, we found that similar questions are often asked repetitively by different agents, especially from less experienced ones. The goal of our work is to leverage the promising advances in conversational AI to provide a chatbot-like mechanism for assisting agents in promptly resolving a customer's issue. In this paper, we develop a neural-based conversational solution that employs BiLSTM with attention mechanism and demonstrate how our system boosts the effectiveness of customer support agents. In addition, we discuss the design principles and the necessary considerations for our system. We then demonstrate how our system, named "Isa" (Intuit Smart Agent), can help customer service agents provide a high-quality customer experience by reducing customer wait time and by applying the knowledge accumulated from customer interactions in future applications.
2019-10-30
Bugeja, Joseph, Vogel, Bahtijar, Jacobsson, Andreas, Varshney, Rimpu.  2019.  IoTSM: An End-to-End Security Model for IoT Ecosystems. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :267-272.

The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.

2019-08-26
Izurieta, C., Kimball, K., Rice, D., Valentien, T..  2018.  A Position Study to Investigate Technical Debt Associated with Security Weaknesses. 2018 IEEE/ACM International Conference on Technical Debt (TechDebt). :138–142.
Context: Managing technical debt (TD) associated with potential security breaches found during design can lead to catching vulnerabilities (i.e., exploitable weaknesses) earlier in the software lifecycle; thus, anticipating TD principal and interest that can have decidedly negative impacts on businesses. Goal: To establish an approach to help assess TD associated with security weaknesses by leveraging the Common Weakness Enumeration (CWE) and its scoring mechanism, the Common Weakness Scoring System (CWSS). Method: We present a position study with a five-step approach employing the Quamoco quality model to operationalize the scoring of architectural CWEs. Results: We use static analysis to detect design level CWEs, calculate their CWSS scores, and provide a relative ranking of weaknesses that help practitioners identify the highest risks in an organization with a potential to impact TD. Conclusion: CWSS is a community agreed upon method that should be leveraged to help inform the ranking of security related TD items.
2019-06-24
Oriero, E., Rahman, M. A..  2018.  Privacy Preserving Fine-Grained Data Distribution Aggregation for Smart Grid AMI Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–9.

An advanced metering infrastructure (AMI) allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.

2019-04-01
Xu, L., Chen, L., Gao, Z., Chang, Y., Iakovou, E., Shi, W..  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.

2019-03-04
Herald, N. E., David, M. W..  2018.  A Framework for Making Effective Responses to Cyberattacks. 2018 IEEE International Conference on Big Data (Big Data). :4798–4805.
The process for determining how to respond to a cyberattack involves evaluating many factors, including some with competing risks. Consequentially, decision makers in the private sector and policymakers in the U.S. government (USG) need a framework in order to make effective response decisions. The authors' research identified two competing risks: 1) the risk of not responding forcefully enough to deter a suspected attacker, and 2) responding in a manner that escalates a situation with an attacker. The authors also identified three primary factors that influence these risks: attribution confidence/time, the scale of the attack, and the relationship with the suspected attacker. This paper provides a framework to help decision makers understand how these factors interact to influence the risks associated with potential response options to cyberattacks. The views expressed do not reflect the official policy or position of the National Intelligence University, the Department of Defense, the U.S. Intelligence Community, or the U.S. Government.
2019-02-25
Setyono, R. Puji, Sarno, R..  2018.  Vendor Track Record Selection Using Best Worst Method. 2018 International Seminar on Application for Technology of Information and Communication. :41–48.
Every company will largely depend on other companies. This will help unite a large business process. Risks that arise from other companies will affect the business performance of a company. Because of this, the right choice for suppliers is crucial. Each vendor has different characteristics. Everything is not always suitable basically the selection process is quite complex and risky. This has led to a new case study which has been studied for years by researchers known as Supplier Selection Problems. Selection of vendors with multi-criteria decision making has been widely studied over years ago. The Best Worst Method is a new science in Multi-Criteria Decision Making (MCDM) determination. In this research, taking case study at XYZ company is in Indonesia which is engaged in mining and industry. The research utilized the transaction data that have been recorded by the XYZ company and analyzed vendor valuation. The weighting of Best Worst Method is calculated based on vendor assessment result. The results show that XYZ company still focuses on Price as its key criteria.
Winter, A., Deniaud, I., Marmier, F., Caillaud, E..  2018.  A risk assessment model for supply chain design. Implementation at Kuehne amp;\#x002B; Nagel Luxembourg. 2018 4th International Conference on Logistics Operations Management (GOL). :1–8.
Every company may be located at the junction of several Supply Chains (SCs) to meet the requirements of many different end customers. To achieve a sustainable competitive advantage over its business rivals, a company needs to continuously improve its relations to its different stakeholders as well as its performance in terms of integrating its decision processes and hence, its communication and information systems. Furthermore, customers' growing awareness of green and sustainable matters and new national and international regulations force enterprises to rethink their whole system. In this paper we propose a model to quantify the identified potential risks to assist in designing or re-designing a supply chain. So that managers may take adequate decisions to have the continuing ability of satisfying customers' requirements. A case study, developed at kuehne + nagel Luxembourg is provided.
2018-12-03
Shearon, C. E..  2018.  IPC-1782 standard for traceability of critical items based on risk. 2018 Pan Pacific Microelectronics Symposium (Pan Pacific). :1–3.

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole that can be utilized for manual to automated processes End to End throughout the supply chain. The perception of traceability data collection persists as being a burden that provides value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle of traceability up to date and enable business to move faster, increase revenue, increase productivity, and decrease costs as a result of increased trust. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems which works well with Industry 4.0, integrating quality, reliability, product safety, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way. The goal of this standard is to create a single expandable and extendable data structure that can be adopted for all levels of traceability and enable easily exchanged information, as appropriate, across many industries. The scope includes support for the most demanding instances for detail and integrity such as those required by critical safety systems, all the way through to situations where only basic traceability, such as for simple consumer products, are required. A key driver for the adoption of the standard is the ability to find a relevant and achievable level of traceability that exactly meets the requirement following risk assessment of the business. The wealth of data accessible from traceability for analysis (e.g.; Big Data, etc.) can easily and quickly yield information that can raise expectations of very significant quality and performance improvements, as well as providing the necessary protection against the costs of issues in the market and providing very timely information to regulatory bodies along with consumers/customers as appropriate. This information can also be used to quickly raise yields, drive product innovation that resonates with consumers, and help drive development tests & design requirements that are meaningful to the Marketplace. Leveraging IPC 1782 to create the best value of Component Traceability for your business.

2018-11-19
Lekshmi, A. S. Sai, Devipriya, V. S..  2017.  An Emulation of Sql Injection Disclosure and Deterrence. 2017 International Conference on Networks Advances in Computational Technologies (NetACT). :314–316.

SQL Injection is one of the most critical security vulnerability in web applications. Most web applications use SQL as web applications. SQL injection mainly affects these websites and web applications. An attacker can easily bypass a web applications authentication and authorization and get access to the contents they want by SQL injection. This unauthorised access helps the attacker to retrieve confidential data's, trade secrets and can even delete or modify valuable documents. Even though, to an extend many preventive measures are found, till now there are no complete solution for this problem. Hence, from the surveys and analyses done, an enhanced methodology is proposed against SQL injection disclosure and deterrence by ensuring proper authentication using Heisenberg analysis and password security using Honey pot mechanism.

2018-11-14
Teive, R. C. G., Neto, E. A. C. A., Mussoi, F. L. R., Rese, A. L. R., Coelho, J., Andrade, F. F., Cardoso, F. L., Nogueira, F., Parreira, J. P..  2017.  Intelligent System for Automatic Performance Evaluation of Distribution System Operators. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.
The performance evaluation of distribution network operators is essential for the electrical utilities to know how prepared the operators are to execute their operation standards and rules, searching for minimizing the time of power outage, after some contingency. The performance of operators can be evaluated by the impact of their actions on several technical and economic indicators of the distribution system. This issue is a complex problem, whose solution involves necessarily some expertise and a multi-criteria evaluation. This paper presents a Tutorial Expert System (TES) for performance evaluation of electrical distribution network operators after a given contingency in the electrical network. The proposed TES guides the evaluation process, taking into account technical, economic and personal criteria, aiding the quantification of these criteria. A case study based on real data demonstrates the applicability of the performance evaluation procedure of distribution network operators.
Keenan, T. P..  2017.  Alice in Blockchains: Surprising Security Pitfalls in PoW and PoS Blockchain Systems. 2017 15th Annual Conference on Privacy, Security and Trust (PST). :400–4002.

If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.

2018-09-28
Kim, H., Yoon, J. I., Jang, Y., Park, S..  2017.  Design of heterogeneous integrated digital signature system for ensuring platform independence. 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). :1–4.

Recently, digital transactions in real estate, insurance, etc. have become popular, and researchers are actively studying digital signatures as a method for distinguishing individuals. However, existing digital signature systems have different methods for making signatures depending on the platform and device, and because they are used on platforms owned by corporations, they have the disadvantage of being highly platform-dependent and having low software extensibility. Therefore, in this paper we have analyzed existing digital signature systems and designed a heterogeneous integrated digital signature system which has per-user contract management features and can guarantee platform independence and increase the ease of software extension and maintenance by using a browser environment.

2018-09-05
Teusner, R., Matthies, C., Giese, P..  2017.  Should I Bug You? Identifying Domain Experts in Software Projects Using Code Complexity Metrics 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :418–425.
In any sufficiently complex software system there are experts, having a deeper understanding of parts of the system than others. However, it is not always clear who these experts are and which particular parts of the system they can provide help with. We propose a framework to elicit the expertise of developers and recommend experts by analyzing complexity measures over time. Furthermore, teams can detect those parts of the software for which currently no, or only few experts exist and take preventive actions to keep the collective code knowledge and ownership high. We employed the developed approach at a medium-sized company. The results were evaluated with a survey, comparing the perceived and the computed expertise of developers. We show that aggregated code metrics can be used to identify experts for different software components. The identified experts were rated as acceptable candidates by developers in over 90% of all cases.
Mayle, A., Bidoki, N. H., Masnadi, S., Boeloeni, L., Turgut, D..  2017.  Investigating the Value of Privacy within the Internet of Things. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Many companies within the Internet of Things (IoT) sector rely on the personal data of users to deliver and monetize their services, creating a high demand for personal information. A user can be seen as making a series of transactions, each involving the exchange of personal data for a service. In this paper, we argue that privacy can be described quantitatively, using the game- theoretic concept of value of information (VoI), enabling us to assess whether each exchange is an advantageous one for the user. We introduce PrivacyGate, an extension to the Android operating system built for the purpose of studying privacy of IoT transactions. An example study, and its initial results, are provided to illustrate its capabilities.

2018-06-20
Chakraborty, S., Stokes, J. W., Xiao, L., Zhou, D., Marinescu, M., Thomas, A..  2017.  Hierarchical learning for automated malware classification. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :23–28.

Despite widespread use of commercial anti-virus products, the number of malicious files detected on home and corporate computers continues to increase at a significant rate. Recently, anti-virus companies have started investing in machine learning solutions to augment signatures manually designed by analysts. A malicious file's determination is often represented as a hierarchical structure consisting of a type (e.g. Worm, Backdoor), a platform (e.g. Win32, Win64), a family (e.g. Rbot, Rugrat) and a family variant (e.g. A, B). While there has been substantial research in automated malware classification, the aforementioned hierarchical structure, which can provide additional information to the classification models, has been ignored. In this paper, we propose the novel idea and study the performance of employing hierarchical learning algorithms for automated classification of malicious files. To the best of our knowledge, this is the first research effort which incorporates the hierarchical structure of the malware label in its automated classification and in the security domain, in general. It is important to note that our method does not require any additional effort by analysts because they typically assign these hierarchical labels today. Our empirical results on a real world, industrial-scale malware dataset of 3.6 million files demonstrate that incorporation of the label hierarchy achieves a significant reduction of 33.1% in the binary error rate as compared to a non-hierarchical classifier which is traditionally used in such problems.

2018-05-30
Pal, S., Poornachandran, P., Krishnan, M. R., Au, P. S., Sasikala, P..  2017.  Malsign: Threat Analysis of Signed and Implicitly Trusted Malicious Code. 2017 International Conference on Public Key Infrastructure and Its Applications (PKIA). :23–27.

Code signing which at present is the only methodology of trusting a code that is distributed to others. It heavily relies on the security of the software providers private key. Attackers employ targeted attacks on the code signing infrastructure for stealing the signing keys which are used later for distributing malware in disguise of genuine software. Differentiating a malware from a benign software becomes extremely difficult once it gets signed by a trusted software providers private key as the operating systems implicitly trusts this signed code. In this paper, we analyze the growing menace of signed malware by examining several real world incidents and present a threat model for the current code signing infrastructure. We also propose a novel solution that prevents this issue of malicious code signing by requiring additional verification of the executable. We also present the serious threat it poses and it consequences. To our knowledge this is the first time this specific issue of Malicious code signing has been thoroughly studied and an implementable solution is proposed.

2018-04-04
Yost, W., Jaiswal, C..  2017.  MalFire: Malware firewall for malicious content detection and protection. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :428–433.

The online portion of modern life is growing at an astonishing rate, with the consequence that more of the user's critical information is stored online. This poses an immediate threat to privacy and security of the user's data. This work will cover the increasing dangers and security risks of adware, adware injection, and malware injection. These programs increase in direct proportion to the number of users on the Internet. Each of these programs presents an imminent threat to a user's privacy and sensitive information, anytime they utilize the Internet. We will discuss how current ad blockers are not the actual solution to these threats, but rather a premise to our work. Current ad blocking tools can be discovered by the web servers which often requires suppression of the ad blocking tool. Suppressing the tool creates vulnerabilities in a user's system, but even when the tool is active their system is still susceptible to peril. It is possible, even when an ad blocking tool is functioning, for it to allow adware content through. Our solution to the contemporary threats is our tool, MalFire.

2018-04-02
Zghidi, A., Hammouda, I., Hnich, B., Knauss, E..  2017.  On the Role of Fitness Dimensions in API Design Assessment - An Empirical Investigation. 2017 IEEE/ACM 1st International Workshop on API Usage and Evolution (WAPI). :19–22.

In this paper we present a case study of applying fitness dimensions in API design assessment. We argue that API assessment is company specific and should take into consideration various stakeholders in the API ecosystem. We identified new fitness dimensions and introduced the notion of design considerations for fitness dimensions such as priorities, tradeoffs, and technical versus cognitive classification.

2018-03-26
Azzedin, F., Suwad, H., Alyafeai, Z..  2017.  Countermeasureing Zero Day Attacks: Asset-Based Approach. 2017 International Conference on High Performance Computing Simulation (HPCS). :854–857.

There is no doubt that security issues are on the rise and defense mechanisms are becoming one of the leading subjects for academic and industry experts. In this paper, we focus on the security domain and envision a new way of looking at the security life cycle. We utilize our vision to propose an asset-based approach to countermeasure zero day attacks. To evaluate our proposal, we built a prototype. The initial results are promising and indicate that our prototype will achieve its goal of detecting zero-day attacks.

Abuein, Q., Shatnawi, A., Al-Sheyab, H..  2017.  Trusted Recomendation System Based on Level of Trust(TRS_LoT). 2017 International Conference on Engineering and Technology (ICET). :1–5.

There are vast amounts of information in our world. Accessing the most accurate information in a speedy way is becoming more difficult and complicated. A lot of relevant information gets ignored which leads to much duplication of work and effort. The focuses tend to provide rapid and intelligent retrieval systems. Information retrieval (IR) is the process of searching for information that is related to some topics of interest. Due to the massive search results, the user will normally have difficulty in identifying the relevant ones. To alleviate this problem, a recommendation system is used. A recommendation system is a sort of filtering information system, which predicts the relevance of retrieved information to the user's needs according to some criteria. Hence, it can provide the user with the results that best fit their needs. The services provided through the web normally provide massive information about any requested item or service. An efficient recommendation system is required to classify this information result. A recommendation system can be further improved if augmented with a level of trust information. That is, recommendations are ranked according to their level of trust. In our research, we produced a recommendation system combined with an efficient level of trust system to guarantee that the posts, comments and feedbacks from users are trusted. We customized the concept of LoT (Level of Trust) [1] since it can cover medical, shopping and learning through social media. The proposed system TRS\_LoT provides trusted recommendations to the users with a high percentage of accuracy. Whereas a 300 post with more than 5000 comments from ``Amazon'' was selected to be used as a dataset, the experiment has been conducted by using same dataset based on ``post rating''.

Ma, H., Tao, O., Zhao, C., Li, P., Wang, L..  2017.  Impact of Replacement Policies on Static-Dynamic Query Results Cache in Web Search Engines. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :137–139.

Caching query results is an efficient technique for Web search engines. A state-of-the-art approach named Static-Dynamic Cache (SDC) is widely used in practice. Replacement policy is the key factor on the performance of cache system, and has been widely studied such as LIRS, ARC, CLOCK, SKLRU and RANDOM in different research areas. In this paper, we discussed replacement policies for static-dynamic cache and conducted the experiments on real large scale query logs from two famous commercial Web search engine companies. The experimental results show that ARC replacement policy could work well with static-dynamic cache, especially for large scale query results cache.

2018-03-19
Kamdem, G., Kamhoua, C., Lu, Y., Shetty, S., Njilla, L..  2017.  A Markov Game Theoritic Approach for Power Grid Security. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :139–144.

The extensive use of information and communication technologies in power grid systems make them vulnerable to cyber-attacks. One class of cyber-attack is advanced persistent threats where highly skilled attackers can steal user authentication information's and then move laterally in the network, from host to host in a hidden manner, until they reach an attractive target. Once the presence of the attacker has been detected in the network, appropriate actions should be taken quickly to prevent the attacker going deeper. This paper presents a game theoretic approach to optimize the defense against an invader attempting to use a set of known vulnerabilities to reach critical nodes in the network. First, the network is modeled as a vulnerability multi-graph where the nodes represent physical hosts and edges the vulnerabilities that the attacker can exploit to move laterally from one host to another. Secondly, a two-player zero-sum Markov game is built where the states of the game represent the nodes of the vulnerability multi-graph graph and transitions correspond to the edge vulnerabilities that the attacker can exploit. The solution of the game gives the optimal strategy to disconnect vulnerable services and thus slow down the attack.

2018-03-05
Das, A., Shen, M. Y., Wang, J..  2017.  Modeling User Communities for Identifying Security Risks in an Organization. 2017 IEEE International Conference on Big Data (Big Data). :4481–4486.

In this paper, we address the problem of peer grouping employees in an organization for identifying security risks. Our motivation for studying peer grouping is its importance for a clear understanding of user and entity behavior analytics (UEBA) that is the primary tool for identifying insider threat through detecting anomalies in network traffic. We show that using Louvain method of community detection it is possible to automate peer group creation with feature-based weight assignments. Depending on the number of employees and their features we show that it is also possible to give each group a meaningful description. We present three new algorithms: one that allows an addition of new employees to already generated peer groups, another that allows for incorporating user feedback, and lastly one that provides the user with recommended nodes to be reassigned. We use Niara's data to validate our claims. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.

Shu, F., Li, M., Chen, S., Wang, X., Li, F..  2017.  Research on Network Security Protection System Based on Dynamic Modeling. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1605.
A dynamic modeling method for network security vulnerabilities which is composed of the design of safety evaluation model, the design of risk model of intrusion event and the design of vulnerability risk model. The model based on identification of vulnerabilities values through dynamic forms can improve the tightness between vulnerability scanning system, intrusion prevention system and security configuration verification system. Based on this model, the network protection system which is most suitable for users can be formed, and the protection capability of the network protection system can be improved.