Biblio
Despite corporate cyber intrusions attracting all the attention, privacy breaches that we, as ordinary users, should be worried about occur every day without any scrutiny. Smartphones, a household item, have inadvertently become a major enabler of privacy breaches. Smartphone platforms use permission systems to regulate access to sensitive resources. These permission systems, however, lack the ability to understand users’ privacy expectations leaving a significant gap between how permission models behave and how users would want the platform to protect their sensitive data. This dissertation provides an in-depth analysis of how users make privacy decisions in the context of Smartphones and how platforms can accommodate user’s privacy requirements systematically. We first performed a 36-person field study to quantify how often applications access protected resources when users are not expecting it. We found that when the application requesting the permission is running invisibly to the user, they are more likely to deny applications access to protected resources. At least 80% of our participants would have preferred to prevent at least one permission request. To explore the feasibility of predicting user’s privacy decisions based on their past decisions, we performed a longitudinal 131-person field study. Based on the data, we built a classifier to make privacy decisions on the user’s behalf by detecting when the context has changed and inferring privacy preferences based on the user’s past decisions. We showed that our approach can accurately predict users’ privacy decisions 96.8% of the time, which is an 80% reduction in error rate compared to current systems. Based on these findings, we developed a custom Android version with a contextually aware permission model. The new model guards resources based on user’s past decisions under similar contextual circumstances. We performed a 38-person field study to measure the efficiency and usability of the new permission model. Based on exit interviews and 5M data points, we found that the new system is effective in reducing the potential violations by 75%. Despite being significantly more restrictive over the default permission systems, participants did not find the new model to cause any usability issues in terms of application functionality.
This paper presents a possible implementation of progressive authentication using the Android pattern lock. Our key idea is to use one pattern for two access levels to the device; an abridged pattern is used to access generic applications and a second, extended and higher-complexity pattern is used less frequently to access more sensitive applications. We conducted a user study of 89 participants and a consecutive user survey on those participants to investigate the usability of such a pattern scheme. Data from our prototype showed that for unlocking lowsecurity applications the median unlock times for users of the multiple pattern scheme and conventional pattern scheme were 2824 ms and 5589 ms respectively, and the distributions in the two groups differed significantly (Mann-Whitney U test, p-value less than 0.05, two-tailed). From our user survey, we did not find statistically significant differences between the two groups for their qualitative responses regarding usability and security (t-test, p-value greater than 0.05, two-tailed), but the groups did not differ by more than one satisfaction rating at 90% confidence.
The security field relies on user studies, often including survey questions, to query end users' general security behavior and experiences, or hypothetical responses to new messages or tools. Self-report data has many benefits – ease of collection, control, and depth of understanding – but also many well-known biases stemming from people's difficulty remembering prior events or predicting how they might behave, as well as their tendency to shape their answers to a perceived audience. Prior work in fields like public health has focused on measuring these biases and developing effective mitigations; however, there is limited evidence as to whether and how these biases and mitigations apply specifically in a computer-security context. In this work, we systematically compare real-world measurement data to survey results, focusing on an exemplar, well-studied security behavior: software updating. We align field measurements about specific software updates (n=517,932) with survey results in which participants respond to the update messages that were used when those versions were released (n=2,092). This allows us to examine differences in self-reported and observed update speeds, as well as examining self-reported responses to particular message features that may correlate with these results. The results indicate that for the most part, self-reported data varies consistently and systematically with measured data. However, this systematic relationship breaks down when survey respondents are required to notice and act on minor details of experimental manipulations. Our results suggest that many insights from self-report security data can, when used with care, translate to real-world environments; however, insights about specific variations in message texts or other details may be more difficult to assess with surveys.
Converged Multi-Level Secure systems allow users to interact with and freely move between applications and data of varying sensitivity on a single user interface. They promise unprecedented usability and security, especially in security-critical environments like Defence. Yet these promises rely on hard assumptions about secure user behaviour. We present initial work to test the validity of these assumptions in the absence of deception by an adversary. We conducted a user study with 21 participants on the Cross Domain Desktop Compositor. Chief amongst our findings is that the vast majority of participants (19 of 21) behave securely, even when doing so requires more effort than to behave insecurely. Our findings suggest that there is large scope for further research on converged Multi-Level Secure systems, and highlight the value of user studies to complement formal security analyses of critical systems.
Currently, usable security and web accessibility design principles exist separately. Although literature at the intersect of accessibility and security is developing, it is limited in its understanding of how users with vision loss operate the web securely. In this paper, we propose heuristics that fuse the nuances of both fields. With these heuristics, we evaluate 10 websites and uncover several issues that can impede users' ability to abide by common security advice.
Passthoughts, in which a user thinks a secret thought to log in to services or devices, provides two factors of authentication (knowledge and inherence) in a single step. Since its proposal in 2005, passthoughts enjoyed a number of successful empirical studies. In this paper, we renew the promise of passthoughts authentication, outlining the main challenges that passthoughts must overcome in order to move from the lab to the real world. We propose two studies, which seek different angles at the fundamental questions we pose. Further, we propose it as a fruitful case study for thinking about what authentication can, and should, be expected to do, as it pushes up against questions of what sorts of "selves" authentication systems must be tasked with recognizing. Through this discussion, we raise novel possibilities for authentication broadly, such as "organic passwords" that change naturally over time, or systems that reject users who are not acting quite "like themselves."
Small, local groups who share protected resources (e.g., families, work teams, student organizations) have unmet authentication needs. For these groups, existing authentication strategies either create unnecessary social divisions (e.g., biometrics), do not identify individuals (e.g., shared passwords), do not equitably distribute security responsibility (e.g., individual passwords), or make it difficult to share or revoke access (e.g., physical keys). To explore an alternative, we designed Thumprint: inclusive group authentication with a shared secret knock. All group members share one secret knock, but individual expressions of the secret are discernible. We evaluated the usability and security of our concept through two user studies with 30 participants. Our results suggest that (1) individuals who enter the same shared thumprint are distinguishable from one another, (2) that people can enter thumprints consistently over time, and (3) that thumprints are resilient to casual adversaries.
A lack of awareness surrounding secure online behaviour can lead to end-users, and their personal details becoming vulnerable to compromise. This paper describes an ongoing research project in the field of usable security, examining the relationship between end-user-security behaviour, and the use of affective feedback to educate end-users. Part of the aforementioned research project considers the link between categorical information users reveal about themselves online, and the information users believe, or report that they have revealed online. The experimental results confirm a disparity between information revealed, and what users think they have revealed, highlighting a deficit in security awareness. Results gained in relation to the affective feedback delivered are mixed, indicating limited short-term impact. Future work seeks to perform a long-term study, with the view that positive behavioural changes may be reflected in the results as end-users become more knowledgeable about security awareness.
Multifactor authentication presents a robust security method, but typically requires multiple steps on the part of the user resulting in a high cost to usability and limiting adoption. Furthermore, a truly usable system must be unobtrusive and inconspicuous. Here, we present a system that provides all three factors of authentication (knowledge, possession, and inherence) in a single step in the form of an earpiece which implements brain-based authentication via custom-fit, in-ear electroencephalography (EEG). We demonstrate its potential by collecting EEG data using manufactured custom-fit earpieces with embedded electrodes. Across 7 participants, we are able to achieve perfect performance, mean 0% false acceptance (FAR) and 0% false rejection rates (FRR), using participants' best performing tasks collected in one session by one earpiece with three electrodes. Our results indicate that a single earpiece with embedded electrodes could provide a discreet, convenient, and robust method for secure one-step, three-factor authentication.
In modern enterprises, incorrect or inconsistent security policies can lead to massive damage, e.g., through unintended data leakage. As policy authors have different skills and background knowledge, usable policy editors have to be tailored to the author's individual needs and to the corresponding application domain. However, the development of individual policy editors and the customization of existing ones is an effort consuming task. In this paper, we present a framework for generating tailored policy editors. In order to empower user-friendly and less error-prone specification of security policies, the framework supports multiple platforms, policy languages, and specification paradigms.
Institutions use the information security (InfoSec) policy document as a set of rules and guidelines to govern the use of the institutional information resources. However, a common problem is that these policies are often not followed or complied with. This study explores the extent to which the problem lies with the policy documents themselves. The InfoSec policies are documented in the natural languages, which are prone to ambiguity and misinterpretation. Subsequently such policies may be ambiguous, thereby making it hard, if not impossible for users to comply with. A case study approach with a content analysis was conducted. The research explores the extent of the problem by using a case study of an educational institution in South Africa.
Augmented reality is poised to become a dominant computing paradigm over the next decade. With promises of three-dimensional graphics and interactive interfaces, augmented reality experiences will rival the very best science fiction novels. This breakthrough also brings in unique challenges on how users can authenticate one another to share rich content between augmented reality headsets. Traditional authentication protocols fall short when there is no common central entity or when access to the central authentication server is not available or desirable. Looks Good To Me (LGTM) is an authentication protocol that leverages the unique hardware and context provided with augmented reality headsets to bring innate human trust mechanisms into the digital world to solve authentication in a usable and secure way. LGTM works over point to point wireless communication so users can authenticate one another in a variety of circumstances and is designed with usability at its core, requiring users to perform only two actions: one to initiate and one to confirm. Users intuitively authenticate one another, using seemingly only each other's faces, but under the hood LGTM uses a combination of facial recognition and wireless localization to bootstrap trust from a wireless signal, to a location, to a face, for secure and usable authentication.
This paper presents a comprehensive review of state-of-the-art research works in knowledge-based user authentication, covering the security and usability aspects of the most prominent user authentication schemes; text-, pin- and graphical-based. From the security perspective, we analyze current threats from a user and service provider perspective. Furthermore, based on current practices in authentication policies, we summarize and discuss their security strengths based on widely applied security metrics. From the usability point of view, we present and discuss the usability of each authentication scheme in regards with task performance and user experience. The analysis reveals that although a plethora of alternative user authentication schemes have been proposed in the literature and users interact differently with the various alternatives, online service providers do not yet adopt alternatives to text-based solutions. We further discuss and identify areas for further research and improved methodology with the aim to drive this research towards the design of sustainable, secure and usable authentication approaches.
Presented at the Illinois Science of Security Bi-weekly Meeting, April 2015.