Biblio
Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.
The extensive increase in the number of IoT devices and the massive data generated and sent to the cloud hinder the cloud abilities to handle it. Further, some IoT devices are latency-sensitive. Such sensitivity makes it harder for far clouds to handle the IoT needs in a timely manner. A new technology named "Fog computing" has emerged as a solution to such problems. Fog computing relies on close by computational devices to handle the conventional cloud load. However, Fog computing introduced additional problems related to the trustworthiness and safety of such devices. Unfortunately, the suggested architectures did not consider such problem. In this paper we present a novel self-configuring fog architecture to support IoT networks with security and trust in mind. We realize the concept of Moving-target defense by mobilizing the applications inside the fog using live migrations. Performance evaluations using a benchmark for mobilized applications showed that the added overhead of live migrations is very small making it deployable in real scenarios. Finally, we presented a mathematical model to estimate the survival probabilities of both static and mobile applications within the fog. Moreover, this work can be extended to other systems such as mobile ad-hoc networks (MANETS) or in vehicular cloud computing (VCC).
Industrial Control systems traditionally achieved security by using proprietary protocols to communicate in an isolated environment from the outside. This paradigm is changed with the advent of the Industrial Internet of Things that foresees flexible and interconnected systems. In this contribution, a device acting as a connection between the operational technology network and information technology network is proposed. The device is an intrusion detection system related to legacy systems that is able to collect and reporting data to and from industrial IoT devices. It is based on the common signature based intrusion detection system developed in the information technology domain, however, to cope with the constraints of the operation technology domain, it exploits anomaly based features. Specifically, it is able to analyze the traffic on the network at application layer by mean of deep packet inspection, parsing the information carried by the proprietary protocols. At a later stage, it collect and aggregate data from and to IoT domain. A simple set up is considered to prove the effectiveness of the approach.
In view of the problem that the intrusion detection method based on One-Class Support Vector Machine (OCSVM) could not detect the outliers within the industrial data, which results in the decision function deviating from the training sample, an anomaly intrusion detection algorithm based on Robust Incremental Principal Component Analysis (RIPCA) -OCSVM is proposed in this paper. The method uses RIPCA algorithm to remove outliers in industrial data sets and realize dimensionality reduction. In combination with the advantages of OCSVM on the single classification problem, an anomaly detection model is established, and the Improved Particle Swarm Optimization (IPSO) is used for model parameter optimization. The simulation results show that the method can efficiently and accurately identify attacks or abnormal behaviors while meeting the real-time requirements of the industrial control system (ICS).
With the proposal of the national industrial 4.0 strategy, the integration of industrial control network and Internet technology is getting higher and higher. At the same time, the closeness of industrial control networks has been broken to a certain extent, making the problem of industrial control network security increasingly serious. S7 protocol is a private protocol of Siemens Company in Germany, which is widely used in the communication process of industrial control network. In this paper, an industrial control intrusion detection model based on S7 protocol is proposed. Traditional protocol parsing technology cannot resolve private industrial control protocols, so, this model uses deep analysis algorithm to realize the analysis of S7 data packets. At the same time, in order to overcome the complexity and portability of static white list configuration, this model dynamically builds a white list through white list self-learning algorithm. Finally, a composite intrusion detection method combining white list detection and abnormal behavior detection is used to detect anomalies. The experiment proves that the method can effectively detect the abnormal S7 protocol packet in the industrial control network.
With the deep integration of industrial control systems and Internet technologies, how to effectively detect whether industrial control systems are threatened by intrusion is a difficult problem in industrial security research. Aiming at the difficulty of high dimensionality and non-linearity of industrial control system network data, the stacked auto-encoder is used to extract the network data features, and the multi-classification support vector machine is used for classification. The research results show that the accuracy of the intrusion detection model reaches 95.8%.
Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.
Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.