Biblio
Filters: Keyword is Heuristic algorithms [Clear All Filters]
Artificial Intelligence for SDN Security: Analysis, Challenges and Approach Proposal. 2022 15th International Conference on Security of Information and Networks (SIN). :01–07.
.
2022. The dynamic state of networks presents a challenge for the deployment of distributed applications and protocols. Ad-hoc schedules in the updating phase might lead to a lot of ambiguity and issues. By separating the control and data planes and centralizing control, Software Defined Networking (SDN) offers novel opportunities and remedies for these issues. However, software-based centralized architecture for distributed environments introduces significant challenges. Security is a main and crucial issue in SDN. This paper presents a deep study of the state-of-the-art of security challenges and solutions for the SDN paradigm. The conducted study helped us to propose a dynamic approach to efficiently detect different security violations and incidents caused by network updates including forwarding loop, forwarding black hole, link congestion, network policy violation, etc. Our solution relies on an intelligent approach based on the use of Machine Learning and Artificial Intelligence Algorithms.
ROS Network Security for a Swing Doors Automation in a Robotized Hospital. 2022 International Siberian Conference on Control and Communications (SIBCON). :1–6.
.
2022. Internet of Medical Things (IoMT) is a rapidly growing branch of IoT (Internet of Things), which requires special treatment to cyber security due to confidentiality of healthcare data and patient health threat. Healthcare data and automated medical devices might become vulnerable targets of malicious cyber-attacks. While a large number of robotic applications, including medical and healthcare, employ robot operating system (ROS) as their backbone, not enough attention is paid for ROS security. The paper discusses a security of ROS-based swing doors automation in the context of a robotic hospital framework, which should be protected from cyber-attacks.
ISSN: 2380-6516
UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
.
2022. Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
.
2022. Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
A Novel Distributed CA System Based on Blockchain. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :710–716.
.
2022. In the PKI-CA system with a traditional trust model based on trust chain and centralized private key management, there are some problems with issuing certificates illegally, denying issued certificates, tampering with issuance log, and leaking certificate private key due to the excessive power of a single CA. A novel distributed CA system based on blockchain was constructed to solve the problems. The system applied blockchain and smart contract to coordinate the certificate issuing process, and stored the issuing process logs and information used to verify certificates on the blockchain. It guaranteed the non-tamperability and non-repudiation of logs and information. Aiming at the disadvantage of easy leakage of private keys in centralized management mode, the system used the homomorphism of elliptic encryption algorithm, CPK and transformation matrix to generate and store user private keys safely and distributively. Experimental analysis showed that the system can not only overcome the drawbacks of the traditional PKI-CA system, but also issue certificates quickly and save as much storage as possible to store certificate private keys.
Sequential decomposition of Stochastic Stackelberg games. 2022 American Control Conference (ACC). :1266–1271.
.
2022. In this paper, we consider a discrete-time stochastic Stackelberg game where there is a defender (also called leader) who has to defend a target and an attacker (also called follower). The attacker has a private type that evolves as a controlled Markov process. The objective is to compute the stochastic Stackelberg equilibrium of the game where defender commits to a strategy. The attacker’s strategy is the best response to the defender strategy and defender’s strategy is optimum given the attacker plays the best response. In general, computing such equilibrium involves solving a fixed-point equation for the whole game. In this paper, we present an algorithm that computes such strategies by solving lower dimensional fixed-point equations for each time t. Based on this algorithm, we compute the Stackelberg equilibrium of a security example.
Towards a Security Stress-Test for Cloud Configurations. 2022 IEEE 15th International Conference on Cloud Computing (CLOUD). :191–196.
.
2022. Securing cloud configurations is an elusive task, which is left up to system administrators who have to base their decisions on "trial and error" experimentations or by observing good practices (e.g., CIS Benchmarks). We propose a knowledge, AND/OR, graphs approach to model cloud deployment security objects and vulnerabilities. In this way, we can capture relationships between configurations, permissions (e.g., CAP\_SYS\_ADMIN), and security profiles (e.g., AppArmor and SecComp). Such an approach allows us to suggest alternative and safer configurations, support administrators in the study of what-if scenarios, and scale the analysis to large scale deployments. We present an initial validation and illustrate the approach with three real vulnerabilities from known sources.
Energy Saving Using Privacy Data Secure Aggregation Algorithm. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :99—102.
.
2022. For the Internet of things (IoT) secure data aggregation issues, data privacy-preserving and limited computation ability and energy of nodes should be tradeoff. Based on analyzing the pros-and-cons of current works, a low energy- consuming secure data aggregation method (LCSDA) was proposed. This method uses shortest path principle to choose neighbor nodes and generates the data aggregation paths in the cluster based on prim minimum spanning tree algorithm. Simulation results show that this method could effectively cut down energy consumption and reduce the probability of cluster head node being captured, in the same time preserving data privacy.
Cyber threat intelligence enabled automated attack incident response. 2022 3rd International Conference on Next Generation Computing Applications (NextComp). :1—6.
.
2022. Cyber attacks keep states, companies and individuals at bay, draining precious resources including time, money, and reputation. Attackers thereby seem to have a first mover advantage leading to a dynamic defender attacker game. Automated approaches taking advantage of Cyber Threat Intelligence on past attacks bear the potential to empower security professionals and hence increase cyber security. Consistently, there has been a lot of research on automated approaches in cyber risk management including works on predictive attack algorithms and threat hunting. Combining data on countermeasures from “MITRE Detection, Denial, and Disruption Framework Empowering Network Defense” and adversarial data from “MITRE Adversarial Tactics, Techniques and Common Knowledge” this work aims at developing methods that enable highly precise and efficient automatic incident response. We introduce Attack Incident Responder, a methodology working with simple heuristics to find the most efficient sets of counter-measures for hypothesized attacks. By doing so, the work contributes to narrowing the attackers first mover advantage. Experimental results are promising high average precisions in predicting effiective defenses when using the methodology. In addition, we compare the proposed defense measures against a static set of defensive techniques offering robust security against observed attacks. Furthermore, we combine the approach of automated incidence response to an approach for threat hunting enabling full automation of security operation centers. By this means, we define a threshold in the precision of attack hypothesis generation that must be met for predictive defense algorithms to outperform the baseline. The calculated threshold can be used to evaluate attack hypothesis generation algorithms. The presented methodology for automated incident response may be a valuable support for information security professionals. Last, the work elaborates on the combination of static base defense with adaptive incidence response for generating a bio-inspired artificial immune system for computerized networks.
Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
.
2022. Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
Multi-objective Gray Wolf Optimization Algorithm for Multi-agent Pathfinding Problem. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1241–1249.
.
2022. As a core problem of multi-agent systems, multiagent pathfinding has an important impact on the efficiency of multi-agent systems. Because of this, many novel multi-agent pathfinding methods have been proposed over the years. However, these methods have focused on different agents with different goals for research, and less research has been done on scenarios where different agents have the same goal. We propose a multiagent pathfinding method incorporating a multi-objective gray wolf optimization algorithm to solve the multi-agent pathfinding problem with the same objective. First, constrained optimization modeling is performed to obtain objective functions about agent wholeness and security. Then, the multi-objective gray wolf optimization algorithm is improved for solving the constrained optimization problem and further optimized for scenarios with insufficient computational resources. To verify the effectiveness of the multi-objective gray wolf optimization algorithm, we conduct experiments in a series of simulation environments and compare the improved multi-objective grey wolf optimization algorithm with some classical swarm intelligence optimization algorithms. The results show that the multi-agent pathfinding method incorporating the multi-objective gray wolf optimization algorithm is more efficient in handling multi-agent pathfinding problems with the same objective.
Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
.
2022. Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
A dynamic algorithm for source code static analysis. 2021 Ivannikov Memorial Workshop (IVMEM). :57–60.
.
2021. A source code static analysis became an industrial standard for program source code issues early detection. As one of requirements to such kind of analysis is high performance to provide response of automatic code checking tool as early as possible as far as such kind of tools integrates to Continuous testing and Integration systems. In this paper we propose a source code static analysis algorithm for solving performance issue of source code static analysis tool in general way.
Coverless Steganography Method based on the Source XML File Organization of OOXML Documents. 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT). :413—420.
.
2021. Existing search-based coverless text steganography algorithms according to the characteristics of the text, do not need to modify the carrier, and have good resistance to detection, but they rely on a large text data set and have a limited hiding capacity. For this reason, this paper proposes a coverless steganography method based on the source XML file organization of the OOXML documents from a new perspective. It analyzes the organization of OOXML documents, and uses the differences of organization to construct the mapping between documents and secret information, so as to realize the coverless information hiding. To achieve the efficiency of information hiding, a compound tree model is designed and introduced to construct the OOXML document category library. Compared with the existing coverless information hiding methods, the text set size that this method relies on is significantly reduced, and the flexibility of the mapping is higher under the similar hiding capacity.
LSB Steganography Using Pixel Locator Sequence with AES. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :302—307.
.
2021. Image steganography is a technique of hiding confidential data in the images. We do this by incorporating the LSB(Least Significant Bit) of the image pixels. LSB steganography has been there for a while, and much progress has been made in it. In this paper, we try to increase the security of the LSB steganography process by incorporating a random data distribution method which we call pixel locator sequence (PLS). This method scatters the data to be infused into the image by randomly picking up the pixels and changing their LSB value accordingly. This random distribution makes it difficult for unknowns to look for the data. This PLS file is also encrypted using AES and is key for the data encryption/decryption process between the two parties. This technique is not very space-efficient and involves sending meta-data (PLS), but that trade-off was necessary for the additional security. We evaluated the proposed approach using two criteria: change in image dynamics and robustness against steganalysis attacks. To assess change in image dynamics, we measured the MSE and PSNR values. To find the robustness of the proposed method, we used the tool StegExpose which uses the stego image produced from the proposed algorithm and analyzes them using the major steganalysis attacks such as Primary Sets, Chi-Square, Sample Pairs, and RS Analysis. Finally, we show that this method has good security metrics for best known LSB steganography detection tools and techniques.
Model-free Reinforcement Learning for Stochastic Stackelberg Security Games. 2020 59th IEEE Conference on Decision and Control (CDC). :348—353.
.
2020. In this paper, we consider a sequential stochastic Stackelberg game with two players, a leader, and a follower. The follower observes the state of the system privately while the leader does not. Players play Stackelberg equilibrium where the follower plays best response to the leader's strategy. In such a scenario, the leader has the advantage of committing to a policy that maximizes its returns given the knowledge that the follower is going to play the best response to its policy. Such a pair of strategies of both the players is defined as Stackelberg equilibrium of the game. Recently, [1] provided a sequential decomposition algorithm to compute the Stackelberg equilibrium for such games which allow for the computation of Markovian equilibrium policies in linear time as opposed to double exponential, as before. In this paper, we extend that idea to the case when the state update dynamics are not known to the players, to propose an reinforcement learning (RL) algorithm based on Expected Sarsa that learns the Stackelberg equilibrium policy by simulating a model of the underlying Markov decision process (MDP). We use particle filters to estimate the belief update for a common agent that computes the optimal policy based on the information which is common to both the players. We present a security game example to illustrate the policy learned by our algorithm.
A Novel Q-Learning Algorithm Based on the Stochastic Environment Path Planning Problem. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1977—1982.
.
2020. In this paper, we proposed a path planning algorithm based on Q-learning model to simulate an environment model, which is suitable for the complex environment. A virtual simulation platform has been built to complete the experiments. The experimental results show that the algorithm proposed in this paper can be effectively applied to the solution of vehicle routing problems in the complex environment.
Stochastic Optimal Control via Hilbert Space Embeddings of Distributions. 2021 60th IEEE Conference on Decision and Control (CDC). :904—911.
.
2021. Kernel embeddings of distributions have recently gained significant attention in the machine learning community as a data-driven technique for representing probability distributions. Broadly, these techniques enable efficient computation of expectations by representing integral operators as elements in a reproducing kernel Hilbert space. We apply these techniques to the area of stochastic optimal control theory and present a method to compute approximately optimal policies for stochastic systems with arbitrary disturbances. Our approach reduces the optimization problem to a linear program, which can easily be solved via the Lagrangian dual, without resorting to gradient-based optimization algorithms. We focus on discrete- time dynamic programming, and demonstrate our proposed approach on a linear regulation problem, and on a nonlinear target tracking problem. This approach is broadly applicable to a wide variety of optimal control problems, and provides a means of working with stochastic systems in a data-driven setting.
A Nonlinear White-Box SM4 Implementation Applied to Edge IoT Agents. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :3358–3363.
.
2021. With the rapid development of power Internet of Things (IoT), the ubiquitous edge agents are frequently exposed in a risky environment, where the white-box attacker could steal all the internal information by full observation of dynamic execution of the cryptographic software. In this situation, a new table-based white-box cryptography implementation of SM4 algorithm is proposed to prevent the attacker from extracting the secret key, which hides the encryption and decryption process in obfuscated lookup tables. Aiming to improve the diversity and ambiguity of the lookup tables as well as resist different types of white-box attacks, the random bijective nonlinear mappings are applied as scrambling encodings of the lookup tables. Moreover, in order to make our implementation more practical in the resource-constrained edge IoT agent, elaborate design is proposed to make some tables reusability, leading to less memory occupation while guaranteeing the security. The validity and security of the proposed implementation will be illustrated through several evaluation indicators.
Dynamic Detection Model of False Data Injection Attack Facing Power Network Security. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :317—321.
.
2021. In order to protect the safety of power grid, improve the early warning precision of false data injection. This paper presents a dynamic detection model for false data injection attacks. Based on the characteristics of APT attacks, a model of attack characteristics for trusted regions is constructed. In order to realize the accurate state estimation, unscented Kalman filtering algorithm is used to estimate the state of nonlinear power system and realize dynamic attack detection. Experimental results show that the precision of this method is higher than 90%, which verifies the effectiveness of this paper in attack detection.
Detection of Induced False Negatives in Malware Samples. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—6.
.
2021. Malware detection is an important area of cyber security. Computer systems rely on malware detection applications to prevent malware attacks from succeeding. Malware detection is not a straightforward task, as new variants of malware are generated at an increasing rate. Machine learning (ML) has been utilised to generate predictive classification models to identify new malware variants which conventional malware detection methods may not detect. Machine learning, has however, been found to be vulnerable to different types of adversarial attacks, in which an attacker is able to negatively affect the classification ability of the ML model. Several defensive measures to prevent adversarial poisoning attacks have been developed, but they often rely on the use of a trusted clean dataset to help identify and remove adversarial examples from the training dataset. The defence in this paper does not require a trusted clean dataset, but instead, identifies intentional false negatives (zero day malware classified as benign) at the testing stage by examining the activation weights of the ML model. The defence was able to identify 94.07% of the successful targeted poisoning attacks.
Design of Code and Chaotic Frequency Modulation for Secure and High Data rate Communication. 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1—6.
.
2021. In Forward Error Correction (FEC), redundant bits are added for detecting and correcting bit error which increases the bandwidth. To solve this issue we combined FEC method with higher order M-ary modulation to provide a bandwidth efficient system. An input bit stream is mapped to a bi-orthogonal code on different levels based on the code rates (4/16, 3/16, and 2/16) used. The jamming attack on wireless networks are mitigated by Chaotic Frequency Hopping (CFH) spread spectrum technique. In this paper, to achieve better data rate and to transmit the data in a secured manner we combined FEC and CFH technique, represented as Code and Chaotic Frequency Modulation (CCFM). In addition, two rate adaptation algorithms namely Static retransmission rate ARF (SARF) and Fast rate reduction ARF (FARF) are employed in CFH technique to dynamically adapt the code rate based on channel condition to reduce a packet retransmission. Symbol Error Rate (SER) performance of the system is analyzed for different code rate with the conventional OFDM in the presence AWGN and Rayleigh channel and the reliability of CFH method is tested under different jammer.
Bipartite Consensus for Multi-Agent Systems with Differential Privacy Constraint. 2021 40th Chinese Control Conference (CCC). :5062—5067.
.
2021. This paper studies the differential privacy-preserving problem of discrete-time multi-agent systems (MASs) with antagonistic information, where the connected signed graph is structurally balanced. First, we introduce the bipartite consensus definitions in the sense of mean square and almost sure, respectively. Second, some criteria for mean square and almost sure bipartite consensus are derived, where the eventualy value is related to the gauge matrix and agents’ initial states. Third, we design the ε-differential privacy algorithm and characterize the tradeoff between differential privacy and system performance. Finally, simulations validate the effectiveness of the proposed algorithm.
Combining Strategies to Compute the Loadability Margin in Dynamic Security Assessment of Power Systems. 2021 IEEE Power & Energy Society General Meeting (PESGM). :1–5.
.
2021. The load margin due to voltage instability and small-signal instability can be a valuable measure for the operator of the power system to ensure a continuous and safe supply of electricity. However, if this load margin was calculated without considering system operating requirements, then this margin may not be adequate. This article proposes an algorithm capable of providing the power system load margin considering the requirements of voltage stability, small-signal stability, and operational requirements, as limits of reactive power generation of synchronous generators in dynamic security assessment. Case studies were conducted in the 107-bus reduced order Brazilian system considering a list of contingencies and directions of load growth.
Investigation of Time-delay Nonlinear Dynamic System in Batch Fermentation with Differential Evolution Algorithm. 2021 International Conference on Information Technology and Biomedical Engineering (ICITBE). :101–104.
.
2021. Differential evolution algorithm is an efficient computational method that uses population crossover and variation to achieve high-quality solutions. The algorithm is simple in principle and fast in solving global solutions, so it has been widely used in complex optimization problems. In this paper, we applied the differential evolution algorithm to a time-delay dynamic system for microbial fermentation of 1,3-propanediol and obtained an average error of 22.67% comparing to baseline error of 48.53%.