Li, Xigao, Azad, Babak Amin, Rahmati, Amir, Nikiforakis, Nick.
2021.
Good Bot, Bad Bot: Characterizing Automated Browsing Activity. 2021 IEEE Symposium on Security and Privacy (SP). :1589—1605.
As the web keeps increasing in size, the number of vulnerable and poorly-managed websites increases commensurately. Attackers rely on armies of malicious bots to discover these vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is, therefore, crucial for the security of the web to understand the population and behavior of malicious bots.In this paper, we report on the design, implementation, and results of Aristaeus, a system for deploying large numbers of "honeysites", i.e., websites that exist for the sole purpose of attracting and recording bot traffic. Through a seven-month-long experiment with 100 dedicated honeysites, Aristaeus recorded 26.4 million requests sent by more than 287K unique IP addresses, with 76,396 of them belonging to clearly malicious bots. By analyzing the type of requests and payloads that these bots send, we discover that the average honeysite received more than 37K requests each month, with more than 50% of these requests attempting to brute-force credentials, fingerprint the deployed web applications, and exploit large numbers of different vulnerabilities. By comparing the declared identity of these bots with their TLS handshakes and HTTP headers, we uncover that more than 86.2% of bots are claiming to be Mozilla Firefox and Google Chrome, yet are built on simple HTTP libraries and command-line tools.
Chang, Mai Lee, Trafton, Greg, McCurry, J. Malcolm, Lockerd Thomaz, Andrea.
2021.
Unfair! Perceptions of Fairness in Human-Robot Teams. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :905–912.
How team members are treated influences their performance in the team and their desire to be a part of the team in the future. Prior research in human-robot teamwork proposes fairness definitions for human-robot teaming that are based on the work completed by each team member. However, metrics that properly capture people’s perception of fairness in human-robot teaming remains a research gap. We present work on assessing how well objective metrics capture people’s perception of fairness. First, we extend prior fairness metrics based on team members’ capabilities and workload to a bigger team. We also develop a new metric to quantify the amount of time that the robot spends working on the same task as each person. We conduct an online user study (n=95) and show that these metrics align with perceived fairness. Importantly, we discover that there are bleed-over effects in people’s assessment of fairness. When asked to rate fairness based on the amount of time that the robot spends working with each person, participants used two factors (fairness based on the robot’s time and teammates’ capabilities). This bleed-over effect is stronger when people are asked to assess fairness based on capability. From these insights, we propose design guidelines for algorithms to enable robotic teammates to consider fairness in its decision-making to maintain positive team social dynamics and team task performance.