Visible to the public Biblio

Found 203 results

Filters: Keyword is Heuristic algorithms  [Clear All Filters]
2022-03-14
Nurmukhametov, Alexey, Vishnyakov, Alexey, Logunova, Vlada, Kurmangaleev, Shamil.  2021.  MAJORCA: Multi-Architecture JOP and ROP Chain Assembler. 2021 Ivannikov Ispras Open Conference (ISPRAS). :37–46.
Nowadays, exploits often rely on a code-reuse approach. Short pieces of code called gadgets are chained together to execute some payload. Code-reuse attacks can exploit vul-nerabilities in the presence of operating system protection that prohibits data memory execution. The ROP chain construction task is the code generation for the virtual machine defined by an exploited executable. It is crucial to understand how powerful ROP attacks can be. Such knowledge can be used to improve software security. We implement MAJORCA that generates ROP and JOP payloads in an architecture agnostic manner and thoroughly consider restricted symbols such as null bytes that terminate data copying via strcpy. The paper covers the whole code-reuse payloads construction pipeline: cataloging gadgets, chaining them in DAG, scheduling, linearizing to the ready-to-run payload. MAJORCA automatically generates both ROP and JOP payloads for x86 and MIPS. MAJORCA constructs payloads respecting restricted symbols both in gadget addresses and data. We evaluate MAJORCA performance and accuracy with rop-benchmark and compare it with open-source compilers. We show that MAJORCA outperforms open-source tools. We propose a ROP chaining metric and use it to estimate the probabilities of successful ROP chaining for different operating systems with MAJORCA as well as other ROP compilers to show that ROP chaining is still feasible. This metric can estimate the efficiency of OS defences.
Nath, Shubha Brata, Addya, Sourav Kanti, Chakraborty, Sandip, Ghosh, Soumya K.  2021.  Container-based Service State Management in Cloud Computing. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :487—493.
In a cloud data center, the client requests are catered by placing the services in its servers. Such services are deployed through a sandboxing platform to ensure proper isolation among services from different users. Due to the lightweight nature, containers have become increasingly popular to support such sandboxing. However, for supporting effective and efficient data center resource usage with minimum resource footprints, improving the containers' consolidation ratio is significant for the cloud service providers. Towards this end, in this paper, we propose an exciting direction to significantly boost up the consolidation ratio of a data-center environment by effectively managing the containers' states. We observe that many cloud-based application services are event-triggered, so they remain inactive unless some external service request comes. We exploit the fact that the containers remain in an idle state when the underlying service is not active, and thus such idle containers can be checkpointed unless an external service request comes. However, the challenge here is to design an efficient mechanism such that an idle container can be resumed quickly to prevent the loss of the application's quality of service (QoS). We have implemented the system, and the evaluation is performed in Amazon Elastic Compute Cloud. The experimental results have shown that the proposed algorithm can manage the containers' states, ensuring the increase of consolidation ratio.
2022-03-08
Jia, Yunsong.  2021.  Design of nearest neighbor search for dynamic interaction points. 2021 2nd International Conference on Big Data and Informatization Education (ICBDIE). :389—393.
This article describes the definition, theoretical derivation, design ideas, and specific implementation of the nearest query algorithm for the acceleration of probabilistic optimization at first, and secondly gives an optimization conclusion that is generally applicable to high-dimensional Minkowski spaces with even-numbered feature parameters. Thirdly the operating efficiency and space sensitivity of this algorithm and the commonly used algorithms are compared from both theoretical and experimental aspects. Finally, the optimization direction is analyzed based on the results.
Zheng, Donghua.  2021.  Dynamic data compression algorithm for wireless sensor networks based on grid deduplication. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :178–182.
In order to improve the status monitoring and management ability of wireless sensor networks, a dynamic data compression method based on grid deduplication is proposed. Grid-based sensor node spatial positioning and big data fusion method are adopted to realize dynamic feature mining of wireless sensor network data, extract feature sequence points of wireless sensor network data, reconstruct wireless sensor network data feature space by adopting spatial grid node recombination, build a statistical detection model of dynamic feature mining of wireless sensor network data by combining grid area grouping compression method, and realize embedded fuzzy control and joint feature distributed adaptive learning. The association matching degree of wireless sensor network data is analyzed. Combining fuzzy subspace compression and big data fusion clustering, the quantitative regression analysis model of wireless sensor network data is established. The time series reorganization of wireless sensor network database is realized by index table name, index column and other information. Compressed sensing method is used in linear fusion subspace to realize data compression and adaptive detection of wireless sensor network. Constraint feature points of wireless sensor network data compression are constructed, and dynamic compression and clustering processing of wireless sensor network data are realized at constraint points. Simulation results show that the feature clustering of data compression in wireless sensor networks is better and the storage space of data is reduced.
2022-03-02
Sargolzaei, Arman.  2021.  A Secure Control Design for Networked Control System with Nonlinear Dynamics under False-Data-Injection Attacks. 2021 American Control Conference (ACC). :2693–2699.

In a centralized Networked Control System (NCS), all agents share local data with a central processing unit that generates control commands for agents. The use of a communication network between the agents gives NCSs a distinct advantage in efficiency, design cost, and simplicity. However, this benefit comes at the expense of vulnerability to a range of cyber-physical attacks. Recently, novel defense mechanisms to counteract false data injection (FDI) attacks on NCSs have been developed for agents with linear dynamics but have not been thoroughly investigated for NCSs with nonlinear dynamics. This paper proposes an FDI attack mitigation strategy for NCSs composed of agents with nonlinear dynamics under disturbances and measurement noises. The proposed algorithm uses both learning and model-based approaches to estimate agents'states for FDI attack mitigation. A neural network is used to model uncertain dynamics and estimate the effect of FDI attacks. The controller and estimator are designed based on Lyapunov stability analysis. A simulation of robots with Euler-Lagrange dynamics is considered to demonstrate the developed controller's performance to respond to FDI attacks in real-time.

Su, Meng-Ying, Che, Wei-Wei, Wang, Zhen-Ling.  2021.  Model-Free Adaptive Security Tracking Control for Networked Control Systems. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). :1475–1480.
The model-free adaptive security tracking control (MFASTC) problem of nonlinear networked control systems is explored in this paper with DoS attacks and delays consideration. In order to alleviate the impact of DoS attack and RTT delays on NCSs performance, an attack compensation mechanism and a networked predictive-based delay compensation mechanism are designed, respectively. The data-based designed method need not the dynamic and structure of the system, The MFASTC algorithm is proposed to ensure the output tracking error being bounded in the mean-square sense. Finally, an example is given to illustrate the effectiveness of the new algorithm by a comparison.
2022-03-01
Raja, Subashree, Bhamidipati, Padmaja, Liu, Xiaobang, Vemuri, Ranga.  2021.  Security Capsules: An Architecture for Post-Silicon Security Assertion Validation for Systems-on-Chip. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :248–253.
In this paper, we propose a methodology for post-silicon validation through the evaluation of security assertions for systems-on-chip (SoC). The methodology is centered around a security architecture in which a "security capsule" is attached to each IP core in the SoC. The security capsule consists of a set of on-line and off-line assertion monitors, a dynamic trace-buffer to trace selected groups of signals, and a dynamic trace controller. The architecture is supported by a trace signal selection and grouping algorithm and a dynamic signal tracing method to evaluate the off-chip monitors. This paper presents the security capsule architecture, the signal selection and grouping algorithm, and the run-time signal tracing method. Results of using the methodology on two SoC architectures based on the OpenRISC-1200 and RISC-V processors are presented.
2022-02-07
Sunny, Leya Elizabeth, Paul, Varghese.  2021.  Strengthening Security of Images Using Dynamic S-Boxes for Cryptographic Applications. 2021 Fourth International Conference on Microelectronics, Signals Systems (ICMSS). :1–5.
Security plays a paradigmatic role in the area of networking. The main goal of security is to protect these networks which contains confidential data against various kinds of attacks. By changing parameters like key size, increasing the rounds of iteration and finally using confusion box as the S-box, the strength of the cryptographic algorithms can be incremented. By using the Data Encryption Standard (DES), the images can be secured with the help of Dynamic S-boxes. Each of these 8 S-boxes contain 64 elements. Each row contains elements in the range 0–15 and are unique. Our proposed system generates these S-boxes dynamically depending on the key. The evaluation of this Dynamic S-box and DES shows much fruitful results over factors like Non-linearity, Strict Avalanche criterion, Balance, memory and time required for implementation using images.
2022-01-31
Li, Xigao, Azad, Babak Amin, Rahmati, Amir, Nikiforakis, Nick.  2021.  Good Bot, Bad Bot: Characterizing Automated Browsing Activity. 2021 IEEE Symposium on Security and Privacy (SP). :1589—1605.
As the web keeps increasing in size, the number of vulnerable and poorly-managed websites increases commensurately. Attackers rely on armies of malicious bots to discover these vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is, therefore, crucial for the security of the web to understand the population and behavior of malicious bots.In this paper, we report on the design, implementation, and results of Aristaeus, a system for deploying large numbers of "honeysites", i.e., websites that exist for the sole purpose of attracting and recording bot traffic. Through a seven-month-long experiment with 100 dedicated honeysites, Aristaeus recorded 26.4 million requests sent by more than 287K unique IP addresses, with 76,396 of them belonging to clearly malicious bots. By analyzing the type of requests and payloads that these bots send, we discover that the average honeysite received more than 37K requests each month, with more than 50% of these requests attempting to brute-force credentials, fingerprint the deployed web applications, and exploit large numbers of different vulnerabilities. By comparing the declared identity of these bots with their TLS handshakes and HTTP headers, we uncover that more than 86.2% of bots are claiming to be Mozilla Firefox and Google Chrome, yet are built on simple HTTP libraries and command-line tools.
Chang, Mai Lee, Trafton, Greg, McCurry, J. Malcolm, Lockerd Thomaz, Andrea.  2021.  Unfair! Perceptions of Fairness in Human-Robot Teams. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :905–912.
How team members are treated influences their performance in the team and their desire to be a part of the team in the future. Prior research in human-robot teamwork proposes fairness definitions for human-robot teaming that are based on the work completed by each team member. However, metrics that properly capture people’s perception of fairness in human-robot teaming remains a research gap. We present work on assessing how well objective metrics capture people’s perception of fairness. First, we extend prior fairness metrics based on team members’ capabilities and workload to a bigger team. We also develop a new metric to quantify the amount of time that the robot spends working on the same task as each person. We conduct an online user study (n=95) and show that these metrics align with perceived fairness. Importantly, we discover that there are bleed-over effects in people’s assessment of fairness. When asked to rate fairness based on the amount of time that the robot spends working with each person, participants used two factors (fairness based on the robot’s time and teammates’ capabilities). This bleed-over effect is stronger when people are asked to assess fairness based on capability. From these insights, we propose design guidelines for algorithms to enable robotic teammates to consider fairness in its decision-making to maintain positive team social dynamics and team task performance.
2022-01-10
Khashan, Osama A..  2021.  Parallel Proxy Re-Encryption Workload Distribution for Efficient Big Data Sharing in Cloud Computing. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0554–0559.
Cloud computing enables users and organizations to conveniently store and share data in large volumes and to enjoy on-demand services. Security and the protection of big data sharing from various attacks is the most challenging issue. Proxy re-encryption (PRE) is an effective method to improve the security of data sharing in the cloud environment. However, in PRE schemes, offloading big data for re-encryption will impose a heavy computational burden on the cloud proxy server, resulting in an increased computation delay and response time for the users. In this paper, we propose a novel parallel PRE workload distribution scheme to dynamically route the big data re-encryption process into the fog of the network. Moreover, this paper proposes a dynamic load balancing technique to avoid an excessive workload for the fog nodes. It also uses lightweight asymmetric cryptography to provide end-to-end security for the big data sharing between users. Within the proposed scheme, the offloading overhead on the centralized cloud server is effectively mitigated. Meanwhile, the processing delay incurred by the big data re-encryption process is efficiently improved.
2021-12-20
Balakin, Maksim, Dvorak, Anton, Kurylev, Daniil.  2021.  Real-time drone detection and recognition by acoustic fingerprint. 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). :44–45.
In recent years, one of the important and interesting tasks has become the protection of civilian and military objects from unmanned aerial vehicles (UAVs) carrying a potential threat. To solve this problem, it is required to detect UAVs and activate protective systems. UAVs can be represented as aerodynamic objects of the monoplane or multicopter type with acoustic fingerprints. In this paper we consider algorithm for UAV acoustic detection and recognition system. Preliminary results of analysis of experimental data show effectiveness of proposed approach.
Piccolboni, Luca, Guglielmo, Giuseppe Di, Carloni, Luca P., Sethumadhavan, Simha.  2021.  CRYLOGGER: Detecting Crypto Misuses Dynamically. 2021 IEEE Symposium on Security and Privacy (SP). :1972–1989.
Cryptographic (crypto) algorithms are the essential ingredients of all secure systems: crypto hash functions and encryption algorithms, for example, can guarantee properties such as integrity and confidentiality. Developers, however, can misuse the application programming interfaces (API) of such algorithms by using constant keys and weak passwords. This paper presents CRYLOGGER, the first open-source tool to detect crypto misuses dynamically. CRYLOGGER logs the parameters that are passed to the crypto APIs during the execution and checks their legitimacy offline by using a list of crypto rules. We compared CRYLOGGER with CryptoGuard, one of the most effective static tools to detect crypto misuses. We show that our tool complements the results of CryptoGuard, making the case for combining static and dynamic approaches. We analyzed 1780 popular Android apps downloaded from the Google Play Store to show that CRYLOGGER can detect crypto misuses on thousands of apps dynamically and automatically. We reverse-engineered 28 Android apps and confirmed the issues flagged by CRYLOGGER. We also disclosed the most critical vulnerabilities to app developers and collected their feedback.
2021-11-29
AlShiab, Ismael, Leivadeas, Aris, Ibnkahla, Mohamed.  2021.  Virtual Sensing Networks and Dynamic RPL-Based Routing for IoT Sensing Services. ICC 2021 - IEEE International Conference on Communications. :1–6.
IoT applications are quickly evolving in scope and objectives while their focus is being shifted toward supporting dynamic users’ requirements. IoT users initiate applications and expect quick and reliable deployment without worrying about the underlying complexities of the required sensing and routing resources. On the other hand, IoT sensing nodes, sinks, and gateways are heterogeneous, have limited resources, and require significant cost and installation time. Sensing network-level virtualization through virtual Sensing Networks (VSNs) could play an important role in enabling the formation of virtual groups that link the needed IoT sensing and routing resources. These VSNs can be initiated on-demand with the goal to satisfy different IoT applications’ requirements. In this context, we present a joint algorithm for IoT Sensing Resource Allocation with Dynamic Resource-Based Routing (SRADRR). The SRADRR algorithm builds on the current distinguished empowerment of sensing networks using recent standards like RPL and 6LowPAN. The proposed algorithm suggests employing the RPL standard concepts to create DODAG routing trees that dynamically adapt according to the available sensing resources and the requirements of the running and arriving applications. Our results and implementation of the SRADRR reveal promising enhancements in the overall applications deployment rate.
2021-11-08
Cai, Junhui, Li, Qianmu.  2020.  Machine Learning-Based Threat Identification of Industrial Internet. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :335–340.
In order to improve production and management efficiency, traditional industrial control systems are gradually connected to the Internet, and more likely to use advanced modern information technologies, such as cloud computing, big data technology, and artificial intelligence. Industrial control system is widely used in national key infrastructure. Meanwhile, a variety of attack threats and risks follow, and once the industrial control network suffers maliciously attack, the loss caused is immeasurable. In order to improve the security and stability of the industrial Internet, this paper studies the industrial control network traffic threat identification technology based on machine learning methods, including GK-SVDD, RNN and KPCA reconstruction error algorithm, and proposes a heuristic method for selecting Gaussian kernel width parameter in GK-SVDD to accelerate real-time threat detection in industrial control environments. Experiments were conducted on two public industrial control network traffic datasets. Compared with the existing methods, these methods can obtain faster detection efficiency and better threat identification performance.
2021-10-12
Dong, Sichen, Jiao, Jian, Li, Shuyu.  2020.  A Multiple-Replica Provable Data Possession Algorithm Based on Branch Authentication Tree. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :400–404.
The following topics are dealt with: learning (artificial intelligence); neural nets; feature extraction; pattern classification; convolutional neural nets; computer network security; security of data; recurrent neural nets; data privacy; and cloud computing.
2021-09-21
Yang, Ping, Shu, Hui, Kang, Fei, Bu, Wenjuan.  2020.  Automatically Generating Malware Summary Using Semantic Behavior Graphs (SBGs). 2020 Information Communication Technologies Conference (ICTC). :282–291.
In malware behavior analysis, there are limitations in the analysis method of control flow and data flow. Researchers analyzed data flow by dynamic taint analysis tools, however, it cost a lot. In this paper, we proposed a method of generating malware summary based on semantic behavior graphs (SBGs, Semantic Behavior Graphs) to address this issue. In this paper, we considered various situation where behaviors be capable of being associated, thus an algorithm of generating semantic behavior graphs was given firstly. Semantic behavior graphs are composed of behavior nodes and associated data edges. Then, we extracted behaviors and logical relationships between behaviors from semantic behavior graphs, and finally generated a summary of malware behaviors with true intension. Experimental results showed that our approach can effectively identify and describe malicious behaviors and generate accurate behavior summary.
2021-08-31
Amjath, M.I.M., Senthooran, V..  2020.  Secure Communication Using Steganography in IoT Environment. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:114—119.
IoT is an emerging technology in modern world of communication. As the usage of IoT devices is increasing in day to day life, the secure data communication in IoT environment is the major challenge. Especially, small sized Single-Board Computers (SBCs) or Microcontrollers devices are widely used to transfer data with another in IoT. Due to the less processing power and storage capabilities, the data acquired from these devices must be transferred very securely in order to avoid some ethical issues. There are many cryptography approaches are applied to transfer data between IoT devices, but there are obvious chances to suspect encrypted messages by eavesdroppers. To add more secure data transfer, steganography mechanism is used to avoid the chances of suspicion as another layer of security. Based on the capabilities of IoT devices, low complexity images are used to hide the data with different hiding algorithms. In this research study, the secret data is encoded through QR code and embedded in low complexity cover images by applying image to image hiding fashion. The encoded image is sent to the receiving device via the network. The receiving device extracts the QR code from image using secret key then decoded the original data. The performance measure of the system is evaluated by the image quality parameters mainly Peak Signal to Noise Ratio (PSNR), Normalized Coefficient (NC) and Security with maintaining the quality of contemporary IoT system. Thus, the proposed method hides the precious information within an image using the properties of QR code and sending it without any suspicion to attacker and competes with the existing methods in terms of providing more secure communication between Microcontroller devices in IoT environment.
2021-08-17
Singh, Shivshakti, Inamdar, Aditi, Kore, Aishwarya, Pawar, Aprupa.  2020.  Analysis of Algorithms for User Authentication using Keystroke Dynamics. 2020 International Conference on Communication and Signal Processing (ICCSP). :0337—0341.
In the present scenario, security is the biggest concern in any domain of applications. The latest and widely used system for user authentication is a biometric system. This includes fingerprint recognition, retina recognition, and voice recognition. But these systems can be bypassed by masqueraders. To avoid this, a combination of these systems is used which becomes very costly. To overcome these two drawbacks keystroke dynamics were introduced in this field. Keystroke dynamics is a biometric authentication-based system on behavior, which is an automated method in which the identity of an individual is identified and confirmed based on the way and the rhythm of passwords typed on a keyboard by the individual. The work in this paper focuses on identifying the best algorithm for implementing an authentication system with the help of machine learning for user identification based on keystroke dynamics. Our proposed model which uses XGBoost gives a comparatively higher accuracy of 93.59% than the other algorithms for the dataset used.
Bhutta, Muhammad Nasir Mumtaz, Cruickshank, Haitham, Nadeem, Adnan.  2020.  A Framework for Key Management Architecture for DTN (KMAD): Requirements and Design. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1–4.
Key Management in Delay Tolerant Networks (DTN) still remains an unsolved complex problem. Due to peculiar characteristics of DTN, important challenges that make it difficult to design key management architecture are: 1) no systematic requirement analysis is undertaken to define its components, their composition and prescribed functions; and 2) no framework is available for its seamless integration with Bundle Security Protocol (BSP). This paper proposes a Key Management Architecture for DTN (KMAD) to address challenges in DTN key management. The proposed architecture not only provides guidelines for key management in DTN but also caters for seamless integration with BSP. The framework utilizes public key cryptography to provide required security services to enable exchange of keying material, and information about security policy and cipher suites. The framework also supports secure exchange of control and data information in DTNs.
2021-07-27
Sinha, Ayush, Chakrabarti, Sourin, Vyas, O.P..  2020.  Distributed Grid restoration based on graph theory. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). :1–6.
With the emergence of smart grids as the primary means of distribution across wide areas, the importance of improving its resilience to faults and mishaps is increasing. The reliability of a distribution system depends upon its tolerance to attacks and the efficiency of restoration after an attack occurs. This paper proposes a unique approach to the restoration of smart grids under attack by impostors or due to natural calamities via optimal islanding of the grid with primary generators and distributed generators(DGs) into sub-grids minimizing the amount of load shed which needs to be incurred and at the same time minimizing the number of switching operations via graph theory. The minimum load which needs to be shed is computed in the first stage followed by selecting the nodes whose load needs to be shed to achieve such a configuration and then finally deriving the sequence of switching operations required to achieve the configuration. The proposed method is tested against standard IEEE 37-bus and a 1069-bus grid system and the minimum load shed along with the sequencing steps to optimal configuration and time to achieve such a configuration are presented which demonstrates the effectiveness of the method when compared to the existing methods in the field. Moreover, the proposed algorithm can be easily modified to incorporate any other constraints which might arise due to any operational configuration of the grid.
2021-07-08
Flores, Hugo, Tran, Vincent, Tang, Bin.  2020.  PAM PAL: Policy-Aware Virtual Machine Migration and Placement in Dynamic Cloud Data Centers. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2549—2558.
We focus on policy-aware data centers (PADCs), wherein virtual machine (VM) traffic traverses a sequence of middleboxes (MBs) for security and performance purposes, and propose two new VM placement and migration problems. We first study PAL: policy-aware virtual machine placement. Given a PADC with a data center policy that communicating VM pairs must satisfy, the goal of PAL is to place the VMs into the PADC to minimize their total communication cost. Due to dynamic traffic loads in PADCs, however, above VM placement may no longer be optimal after some time. We thus study PAM: policy-aware virtual machine migration. Given an existing VM placement in the PADC and dynamic traffic rates among communicating VMs, PAM migrates VMs in order to minimize the total cost of migration and communication of the VM pairs. We design optimal, approximation, and heuristic policyaware VM placement and migration algorithms. Our experiments show that i) VM migration is an effective technique, reducing total communication cost of VM pairs by 25%, ii) our PAL algorithms outperform state-of-the-art VM placement algorithm that is oblivious to data center policies by 40-50%, and iii) our PAM algorithms outperform the only existing policy-aware VM migration scheme by 30%.
2021-07-07
Mengli, Zhou, Fucai, Chen, Wenyan, Liu, Hao, Liang.  2020.  Negative Feedback Dynamic Scheduling Algorithm based on Mimic Defense in Cloud Environment. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2265–2270.
The virtualization technology in cloud environment brings some data and privacy security issues to users. Aiming at the problems of virtual machines singleness, homogeneity and static state in cloud environment, a negative feedback dynamic scheduling algorithm is proposed. This algorithm is based on mimic defense and creates multiple virtual machines to complete user request services together through negative feedback control mechanism which can achieve real-time monitor of the running state of virtual machines. When virtual machines state is found to be inconsistent, this algorithm will dynamically change its execution environment, resulting in the attacker's information collection and vulnerability exploitation process being disrupting. Experiments show that the algorithm can better solve security threats caused by the singleness, homogeneity and static state of virtual machines in the cloud, and improve security and reliability of cloud users.
2021-06-02
Xiong, Yi, Li, Zhongkui.  2020.  Privacy Preserving Average Consensus by Adding Edge-based Perturbation Signals. 2020 IEEE Conference on Control Technology and Applications (CCTA). :712—717.
In this paper, the privacy preserving average consensus problem of multi-agent systems with strongly connected and weight balanced graph is considered. In most existing consensus algorithms, the agents need to exchange their state information, which leads to the disclosure of their initial states. This might be undesirable because agents' initial states may contain some important and sensitive information. To solve the problem, we propose a novel distributed algorithm, which can guarantee average consensus and meanwhile preserve the agents' privacy. This algorithm assigns some additive perturbation signals on the communication edges and these perturbations signals will be added to original true states for information exchanging. This ensures that direct disclosure of initial states can be avoided. Then a rigid analysis of our algorithm's privacy preserving performance is provided. For any individual agent in the network, we present a necessary and sufficient condition under which its privacy is preserved. The effectiveness of our algorithm is demonstrated by a numerical simulation.
Gohari, Parham, Hale, Matthew, Topcu, Ufuk.  2020.  Privacy-Preserving Policy Synthesis in Markov Decision Processes. 2020 59th IEEE Conference on Decision and Control (CDC). :6266—6271.
In decision-making problems, the actions of an agent may reveal sensitive information that drives its decisions. For instance, a corporation's investment decisions may reveal its sensitive knowledge about market dynamics. To prevent this type of information leakage, we introduce a policy synthesis algorithm that protects the privacy of the transition probabilities in a Markov decision process. We use differential privacy as the mathematical definition of privacy. The algorithm first perturbs the transition probabilities using a mechanism that provides differential privacy. Then, based on the privatized transition probabilities, we synthesize a policy using dynamic programming. Our main contribution is to bound the "cost of privacy," i.e., the difference between the expected total rewards with privacy and the expected total rewards without privacy. We also show that computing the cost of privacy has time complexity that is polynomial in the parameters of the problem. Moreover, we establish that the cost of privacy increases with the strength of differential privacy protections, and we quantify this increase. Finally, numerical experiments on two example environments validate the established relationship between the cost of privacy and the strength of data privacy protections.