Biblio
We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.
Mobile Ad hoc Network (MANET) is the collection of mobile devices which could change the locations and configure themselves without a centralized base point. Mobile Ad hoc Networks are vulnerable to attacks due to its dynamic infrastructure. The routing attacks are one among the possible attacks that causes damage to MANET. This paper gives a new method of risk aware response technique which is combined version the Dijkstra's shortest path algorithm and Destination Sequenced Distance Vector (DSDV) algorithm. This can reduce black hole attacks. Dijkstra's algorithm finds the shortest path from the single source to the destination when the edges have positive weights. The DSDV is an improved version of the conventional technique by adding the sequence number and next hop address in each routing table.
This paper proposes a distributed fixed-time based secondary controller for the DC microgrids (MGs) to overcome the drawbacks of conventional droop control. The controller, based on a distributed fixed-time control approach, can remove the DC voltage deviation and provide proportional current sharing simultaneously within a fixed-time. Comparing with the conventional centralized secondary controller, the controller, using the dynamic consensus, on each converter communicates only with its neighbors on a communication graph which increases the convergence speed and gets an improved performance. The proposed control strategy is simulated in PLECS to test the controller performance, link-failure resiliency, plug and play capability and the feasibility under different time delays.
This paper studies the deletion propagation problem in terms of minimizing view side-effect. It is a problem funda-mental to data lineage and quality management which could be a key step in analyzing view propagation and repairing data. The investigated problem is a variant of the standard deletion propagation problem, where given a source database D, a set of key preserving conjunctive queries Q, and the set of views V obtained by the queries in Q, we try to identify a set T of tuples from D whose elimination prevents all the tuples in a given set of deletions on views △V while preserving any other results. The complexity of this problem has been well studied for the case with only a single query. Dichotomies, even trichotomies, for different settings are developed. However, no results on multiple queries are given which is a more realistic case. We study the complexity and approximations of optimizing the side-effect on the views, i.e., find T to minimize the additional damage on V after removing all the tuples of △V. We focus on the class of key-preserving conjunctive queries which is a dichotomy for the single query case. It is surprising to find that except the single query case, this problem is NP-hard to approximate within any constant even for a non-trivial set of multiple project-free conjunctive queries in terms of view side-effect. The proposed algorithm shows that it can be approximated within a bound depending on the number of tuples of both V and △V. We identify a class of polynomial tractable inputs, and provide a dynamic programming algorithm to solve the problem. Besides data lineage, study on this problem could also provide important foundations for the computational issues in data repairing. Furthermore, we introduce some related applications of this problem, especially for query feedback based data cleaning.
Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and sparse Autoencoder based Anomaly Detection algorithm named GAAD. In GAAD, the network traffic over contiguous time intervals is first modelled as a series of dynamic bipartite graph increments. One mode projection is performed on each bipartite graph increment and the adjacency matrix derived. Columns of the resultant adjacency matrix are then used to train a sparse autoencoder to reconstruct it. The sum of squared errors between the reconstructed approximation and original adjacency matrix is then calculated. An online learning algorithm is then used to estimate a Gaussian distribution that models the error distribution. Outlier error values are deemed to represent anomalous traffic flows corresponding to possible attacks. In the experiment, a network emulator was used to generate representative ecommerce traffic flows over a time period of 225 minutes with five attacks injected, including SYN scans, host emulation and DDoS attacks. ROC curves were generated to investigate the influence of the autoencoder hyper-parameters. It was found that increasing the number of hidden nodes and their activation level, and increasing sparseness resulted in improved performance. Analysis showed that the sparse autoencoder was unable to encode the highly structured adjacency matrix structures associated with attacks, hence they were detected as anomalies. In contrast, SVD and variants, such as the compact matrix decomposition, were found to accurately encode the attack matrices, hence they went undetected.
Multi-tag identification technique has been applied widely in the RFID system to increase flexibility of the system. However, it also brings serious tags collision issues, which demands the efficient anti-collision schemes. In this paper, we propose a Multi-target tags assignment slots algorithm based on Hash function (MTSH) for efficient multi-tag identification. The proposed algorithm can estimate the number of tags and dynamically adjust the frame length. Specifically, according to the number of tags, the proposed algorithm is composed of two cases. when the number of tags is small, a hash function is constructed to map the tags into corresponding slots. When the number of tags is large, the tags are grouped and randomly mapped into slots. During the tag identification, tags will be paired with a certain matching rate and then some tags will exit to improve the efficiency of the system. The simulation results indicate that the proposed algorithm outperforms the traditional anti-collision algorithms in terms of the system throughput, stability and identification efficiency.
As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.
In the modern day and age, credential based authentication systems no longer provide the level of security that many organisations and their services require. The level of trust in passwords has plummeted in recent years, with waves of cyber attacks predicated on compromised and stolen credentials. This method of authentication is also heavily reliant on the individual user's choice of password. There is the potential to build levels of security on top of credential based authentication systems, using a risk based approach, which preserves the seamless authentication experience for the end user. One method of adding this security to a risk based authentication framework, is keystroke dynamics. Monitoring the behaviour of the users and how they type, produces a type of digital signature which is unique to that individual. Learning this behaviour allows dynamic flags to be applied to anomalous typing patterns that are produced by attackers using stolen credentials, as a potential risk of fraud. Methods from statistics and machine learning have been explored to try and implement such solutions. This paper will look at an Autoencoder model for learning the keystroke dynamics of specific users. The results from this paper show an improvement over the traditional tried and tested statistical approaches with an Equal Error Rate of 6.51%, with the additional benefits of relatively low training times and less reliance on feature engineering.