Biblio
Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.
This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.
This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs) that are subjected to compositional attacks such as eavesdropping and covert attack. We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer to learn a linear quadratic regulator (LQR), and thereafter, use such information to conduct a covert attack on the dynamic system, which we refer to as doubly learning-based control and attack (DLCA) framework. We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system, and at the same time, can inject sufficient misinformation in the estimation of system dynamics by the attacker. The algorithm is accompanied by theoretical guarantees and extensive numerical experiments on a consensus multi-agent system and on a benchmark power grid model.
Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.
In this work, the algorithm of increasing the information security of a communication system with Orthogonal Frequency Division Multiplexing (OFDM) was achieved by using a discrete-nonlinear Duffing system with dynamic chaos. The main idea of increasing information security is based on scrambling input information on three levels. The first one is mixing up data order, the second is scrambling data values and the final is mixing symbols at the Quadrature Amplitude Modulation (QAM) plot constellation. Each level's activities were made with the use of pseudorandom numbers set, generated by the discrete-nonlinear Duffing system with dynamic chaos.
Cloud security includes the strategies which works together to guard data and infrastructure with a set of policies, procedures, controls and technologies. These security events are arranged to protect cloud data, support supervisory obedience and protect customers' privacy as well as setting endorsement rules for individual users and devices. The partition-based handling and encryption mechanism which provide fine-grained admittance control and protected data sharing to the data users in cloud computing. Graph partition problems fall under the category of NP-hard problems. Resolutions to these problems are generally imitative using heuristics and approximation algorithms. Partition problems strategy is used in bi-criteria approximation or resource augmentation approaches with a common extension of hyper graphs, which can address the storage hierarchy.
This paper studies the secure computation offloading for multi-user multi-server mobile edge computing (MEC)-enabled internet of things (IoT). A novel jamming signal scheme is designed to interfere with the decoding process at the Eve, but not impair the uplink task offloading from users to APs. Considering offloading latency and secrecy constraints, this paper studies the joint optimization of communication and computation resource allocation, as well as partial offloading ratio to maximize the total secrecy offloading data (TSOD) during the whole offloading process. The considered problem is nonconvex, and we resort to block coordinate descent (BCD) method to decompose it into three subproblems. An efficient iterative algorithm is proposed to achieve a locally optimal solution to power allocation subproblem. Then the optimal computation resource allocation and offloading ratio are derived in closed forms. Simulation results demonstrate that the proposed algorithm converges fast and achieves higher TSOD than some heuristics.
Concurrency programs often induce buggy results due to the unexpected interaction among threads. The detection of these concurrency bugs costs a lot because they usually appear under a specific execution trace. How to virtually explore different thread schedules to detect concurrency bugs efficiently is an important research topic. Many techniques have been proposed, including lightweight techniques like adaptive randomized scheduling (ARS) and heavyweight techniques like maximal causality reduction (MCR). Compared to heavyweight techniques, ARS is efficient in exploring different schedulings and achieves state-of-the-art performance. However, it will lead to explore large numbers of redundant thread schedulings, which will reduce the efficiency. Moreover, it suffers from the “cold start” issue, when little information is available to guide the distance calculation at the beginning of the exploration. In this work, we propose a Heuristic-Enhanced Adaptive Randomized Scheduling (HARS) algorithm, which improves ARS to detect concurrency bugs guided with novel distance metrics and heuristics obtained from existing research findings. Compared with the adaptive randomized scheduling method, it can more effectively distinguish the traces that may contain concurrency bugs and avoid redundant schedules, thus exploring diverse thread schedules effectively. We conduct an evaluation on 45 concurrency Java programs. The evaluation results show that our algorithm performs more stably in terms of effectiveness and efficiency in detecting concurrency bugs. Notably, HARS detects hard-to-expose bugs more effectively, where the buggy traces are rare or the bug triggering conditions are tricky.
The design of attacks for cyber physical systems is critical to assess CPS resilience at design time and run-time, and to generate rich datasets from testbeds for research. Attacks against cyber physical systems distinguish themselves from IT attacks in that the main objective is to harm the physical system. Therefore, both cyber and physical system knowledge are needed to design such attacks. The current practice to generate attacks either focuses on the cyber part of the system using IT cyber security existing body of knowledge, or uses heuristics to inject attacks that could potentially harm the physical process. In this paper, we present a systematic approach to automatically generate integrity attacks from the CPS safety and control specifications, without knowledge of the physical system or its dynamics. The generated attacks violate the system operational and safety requirements, hence present a genuine test for system resilience. We present an algorithm to automate the malware payload development. Several examples are given throughout the paper to illustrate the proposed approach.
Distributed Denial of Service (DDoS) attacks became a true threat to network infrastructure. DDoS attacks are capable of inflicting major disruption to the information communication technology infrastructure. DDoS attacks aim to paralyze networks by overloading servers, network links, and network devices with illegitimate traffic. Therefore, it is important to detect and mitigate DDoS attacks to reduce the impact of DDoS attacks. In traditional networks, the hardware and software to detect and mitigate DDoS attacks are expensive and difficult to deploy. Software-Defined Network (SDN) is a new paradigm in network architecture by separating the control plane and data plane, thereby increasing scalability, flexibility, control, and network management. Therefore, SDN can dynamically change DDoS traffic forwarding rules and improve network security. In this study, a DDoS attack detection and mitigation system was built on the SDN architecture using the random forest machine-learning algorithm. The random forest algorithm will classify normal and attack packets based on flow entries. If packets are classified as a DDoS attack, it will be mitigated by adding flow rules to the switch. Based on tests that have been done, the detection system can detect DDoS attacks with an average accuracy of 98.38% and an average detection time of 36 ms. Then the mitigation system can mitigate DDoS attacks with an average mitigation time of 1179 ms and can reduce the average number of attack packets that enter the victim host by 15672 packets and can reduce the average number of CPU usage on the controller by 44,9%.