Visible to the public Biblio

Found 454 results

Filters: Keyword is Information security  [Clear All Filters]
2023-07-21
Hamzah, Anwer Sattar, Abdul-Rahaim, Laith Ali.  2022.  Smart Homes Automation System Using Cloud Computing Based Enhancement Security. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :164—169.
Smart home automation is one of the prominent topics of the current era, which has attracted the attention of researchers for several years due to smart home automation contributes to achieving many capabilities, which have had a real and vital impact on our daily lives, such as comfort, energy conservation, environment, and security. Home security is one of the most important of these capabilities. Many efforts have been made on research and articles that focus on this area due to the increased rate of crime and theft. The present paper aims to build a practically implemented smart home that enhances home control management and monitors all home entrances that are often vulnerable to intrusion by intruders and thieves. The proposed system depends on identifying the person using the face detection and recognition method and Radio Frequency Identification (RFID) as a mechanism to enhance the performance of home security systems. The cloud server analyzes the received member identification to retrieve the permission to enter the home. The system showed effectiveness and speed of response in transmitting live captures of any illegal intrusive activity at the door or windows of the house. With the growth and expansion of the concept of smart homes, the amount of information transmitted, information security weakness, and response time disturbances, to reduce latency, data storage, and maintain information security, by employing Fog computing architecture in smart homes as a broker between the IoT layer and the cloud servers and the user layer.
Mukherjee, Pratyusa, Kumar Barik, Rabindra.  2022.  Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.

Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.

Hoffmann, David, Biffl, Stefan, Meixner, Kristof, Lüder, Arndt.  2022.  Towards Design Patterns for Production Security. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.
In Production System Engineering (PSE), domain experts aim at effectively and efficiently analyzing and mitigating information security risks to product and process qualities for manufacturing. However, traditional security standards do not connect security analysis to the value stream of the production system nor to production quality requirements. This paper aims at facilitating security analysis for production quality already in the design phase of PSE. In this paper, we (i) identify the connection between security and production quality, and (ii) introduce the Production Security Network (PSN) to efficiently derive reusable security requirements and design patterns for PSE. We evaluate the PSN with threat scenarios in a feasibility study. The study results indicate that the PSN satisfies the requirements for systematic security analysis. The design patterns provide a good foundation for improving the communication of domain experts by connecting security and quality concerns.
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.  2022.  An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
2023-07-14
Susan, V Shyamala, Vivek, V., Muthusamy, P., Priyanshu, Deepa, Singh, Arjun, Tripathi, Vikas.  2022.  More Efficient Data Security by DEVELOINV AES Hybrid Algorithm. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :1550–1554.
The development of cloud apps enables people to exchange resources, goods, and expertise online with other clients. The material is more vulnerable to numerous security dangers from outsiders due to the fact that millions of users exchange data through the same system. How to maintain the security of this data is now the main concern. The current data protection system functions best when it places a greater priority on safeguarding data maintained in online storage than it does on cybersecurity during transportation. The data becomes open to intrusion attacks while being transferred. Additionally, the present craze states that an outside auditor may view data as it is being transmitted. Additionally, by allowing the hacker to assume a third-person identity while obtaining the information, this makes the data more susceptible to exploitation. The proposed system focuses on using encryption to safeguard information flow since cybersecurity is seen as a major issue. The approach also takes into account the fourth auditing issue, which is that under the recommended manner, the inspector is not allowed to see the user information. Tests have shown that the recommended technique improves security overall by making it harder for hackers to decode the supplied data.
2023-07-13
Veremey, Anastasiya, Kustov, Vladimir, Ravi, Renjith V.  2022.  Security Research and Design of Hierarchical Embedded Information Security System. 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
In this paper, the reader’s attention is directed to the problem of inefficiency of the add-on information security tools, that are installed in operating systems, including virtualization systems. The paper shows the disadvantages, that significantly affect the maintenance of an adequate level of security in the operating system. The results allowing to control all areas hierarchical of protection of the specialized operating system are presented.
Wu, Yan.  2022.  Information Security Management System for Archives Management Based on Embedded Artificial Intelligence. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :340–344.
Archival services are one of the main functions of an information security management system for archival management, and the conversion and updating of archival intelligence services is an important means to meet the increasing diversity and wisdom of the age of intelligence. The purpose of this paper is to study an information security management system for archival management based on embedded artificial intelligence. The implementation of an embedded control management system for intelligent filing cabinets is studied. Based on a configurable embedded system security model, the access control process and the functional modules of the system based on a secure call cache are analysed. Software for wireless RF communication was designed, and two remote control options were designed using CAN technology and wireless RF technology. Tests have shown that the system is easy to use, feature-rich and reliable, and can meet the needs of different users for regular control of file room management.
2023-07-12
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
2023-06-22
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-05-26
Sergeevich, Basan Alexander, Elena Sergeevna, Basan, Nikolaevna, Ivannikova Tatyana, Sergey Vitalievich, Korchalovsky, Dmitrievna, Mikhailova Vasilisa, Mariya Gennadievna, Shulika.  2022.  The concept of the knowledge base of threats to cyber-physical systems based on the ontological approach. 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). :90—95.
Due to the rapid development of cyber-physical systems, there are more and more security problems. The purpose of this work is to develop the concept of a knowledge base in the field of security of cyber-physical systems based on an ontological approach. To create the concept of a knowledge base, it was necessary to consider the system of a cyber-physical system and highlight its structural parts. As a result, the main concepts of the security of a cyber-physical system were identified and the concept of a knowledge base was drawn up, which in the future will help to analyze potential threats to cyber-physical systems.
2023-05-19
Severino, Ricardo, Rodrigues, João, Ferreira, Luis Lino.  2022.  Exploring Timing Covert Channel Performance over the IEEE 802.15.4. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.
As IoT technologies mature, they are increasingly finding their way into more sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are paramount. While the number of deployed IoT devices continues to increase annually, they still present severe cyber-security vulnerabilities, turning them into potential targets and entry points to support further attacks. Naturally, as these nodes are compromised, attackers aim at setting up stealthy communication behaviours, to exfiltrate data or to orchestrate nodes of a botnet in a cloaked fashion. Network covert channels are increasingly being used with such malicious intents. The IEEE 802.15.4 is one of the most pervasive protocols in IoT, and a fundamental part of many communication infrastructures. Despite this fact, the possibility of setting up such covert communication techniques on this medium has received very little attention. We aim at analysing the performance and feasibility of such covert-channel implementations upon the IEEE 802.15.4 protocol. This will enable a better understanding of the involved risk and help supporting the development of further cyber-security mechanisms to mitigate this threat.
Li, Wei, Liao, Jie, Qian, Yuwen, Zhou, Xiangwei, Lin, Yan.  2022.  A Wireless Covert Communication System: Antenna Coding and Achievable Rate Analysis. ICC 2022 - IEEE International Conference on Communications. :438—443.
In covert communication systems, covert messages can be transmitted without being noticed by the monitors or adversaries. Therefore, the covert communication technology has emerged as a novel method for network authentication, copyright protection, and the evidence of cybercrimes. However, how to design the covert communication in the physical layer of wireless networks and how to improve the channel capacity for the covert communication systems are very challenging. In this paper, we propose a wireless covert communication system, where data streams from the antennas of the transmitter are coded according to a code book to transmit covert and public messages. We adopt a modulation scheme, named covert quadrature amplitude modulation (QAM), to modulate the messages, where the constellation of covert information bits deviates from its normal coordinates. Moreover, the covert receiver can detect the covert information bits according to the constellation departure. Simulation results show that proposed covert communication system can significantly improve the covert data rate and reduce the covert bit error rate, in comparison with the traditional covert communication systems.
2023-05-12
Huang, Song, Yang, Zhen, Zheng, Changyou, Wang, Yang, Du, Jinhu, Ding, Yixian, Wan, Jinyong.  2022.  Intellectual Property Right Confirmation System Oriented to Crowdsourced Testing Services. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :64–68.

In the process of crowdsourced testing service, the intellectual property of crowdsourced testing has been faced with problems such as code plagiarism, difficulties in confirming rights and unreliability of data. Blockchain is a decentralized, tamper-proof distributed ledger, which can help solve current problems. This paper proposes an intellectual property right confirmation system oriented to crowdsourced testing services, combined with blockchain, IPFS (Interplanetary file system), digital signature, code similarity detection to realize the confirmation of crowdsourced testing intellectual property. The performance test shows that the system can meet the requirements of normal crowdsourcing business as well as high concurrency situations.

Liu, Aodi, Du, Xuehui, Wang, Na, Wang, Xiaochang, Wu, Xiangyu, Zhou, Jiashun.  2022.  Implement Security Analysis of Access Control Policy Based on Constraint by SMT. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1043–1049.
Access control is a widely used technology to protect information security. The implementation of access control depends on the response generated by access control policies to users’ access requests. Therefore, ensuring the correctness of access control policies is an important step to ensure the smooth implementation of access control mechanisms. To solve this problem, this paper proposes a constraint based access control policy security analysis framework (CACPSAF) to perform security analysis on access control policies. The framework transforms the problem of security analysis of access control policy into the satisfiability of security principle constraints. The analysis and calculation of access control policy can be divided into formal transformation of access control policy, SMT coding of policy model, generation of security principle constraints, policy detection and evaluation. The security analysis of policies is divided into mandatory security principle constraints, optional security principle constraints and user-defined security principle constraints. The multi-dimensional security analysis of access control policies is realized and the semantic expression of policy analysis is stronger. Finally, the effectiveness of this framework is analyzed by performance evaluation, which proves that this framework can provide strong support for fine-grained security analysis of policies, and help to correctly model and conFigure policies during policy modeling, implementation and verification.
ISSN: 2768-6515
2023-04-28
Deng, Zijie, Feng, Guocong, Huang, Qingshui, Zou, Hong, Zhang, Jiafa.  2022.  Research on Enterprise Information Security Risk Assessment System Based on Bayesian Neural Network. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :938–941.
Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
Iqbal, Sarfraz.  2022.  Analyzing Initial Design Theory Components for Developing Information Security Laboratories. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :36–40.
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
Wang, Man.  2022.  Research on Network Confrontation Information Security Protection System under Computer Deep Learning. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :1442–1447.
Aiming at the single hopping strategy in the terminal information hopping active defense technology, a variety of heterogeneous hopping modes are introduced into the terminal information hopping system, the definition of the terminal information is expanded, and the adaptive adjustment of the hopping strategy is given. A network adversarial training simulation system is researched and designed, and related subsystems are discussed from the perspective of key technologies and their implementation, including interactive adversarial training simulation system, adversarial training simulation support software system, adversarial training simulation evaluation system and adversarial training Mock Repository. The system can provide a good environment for network confrontation theory research and network confrontation training simulation, which is of great significance.
Hu, Yuanyuan, Cao, Xiaolong, Li, Guoqing.  2022.  The Design and Realization of Information Security Technology and Computer Quality System Structure. 2022 International Conference on Artificial Intelligence in Everything (AIE). :460–464.
With the development of computer technology and information security technology, computer networks will increasingly become an important means of information exchange, permeating all areas of social life. Therefore, recognizing the vulnerabilities and potential threats of computer networks as well as various security problems that exist in reality, designing and researching computer quality architecture, and ensuring the security of network information are issues that need to be resolved urgently. The purpose of this article is to study the design and realization of information security technology and computer quality system structure. This article first summarizes the basic theory of information security technology, and then extends the core technology of information security. Combining the current status of computer quality system structure, analyzing the existing problems and deficiencies, and using information security technology to design and research the computer quality system structure on this basis. This article systematically expounds the function module data, interconnection structure and routing selection of the computer quality system structure. And use comparative method, observation method and other research methods to design and research the information security technology and computer quality system structure. Experimental research shows that when the load of the computer quality system structure studied this time is 0 or 100, the data loss rate of different lengths is 0, and the correct rate is 100, which shows extremely high feasibility.
Lu, Chaofan.  2022.  Research on the technical application of artificial intelligence in network intrusion detection system. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :109–112.
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Xiao, Wenfeng.  2022.  Research on applied strategies of business financial audit in the age of artificial intelligence. 2022 18th International Conference on Computational Intelligence and Security (CIS). :1–4.
Artificial intelligence (AI) was engendered by the rapid development of high and new technologies, which altered the environment of business financial audits and caused problems in recent years. As the pioneers of enterprise financial monitoring, auditors must actively and proactively adapt to the new audit environment in the age of AI. However, the performances of the auditors during the adaptation process are not so favorable. In this paper, methods such as data analysis and field research are used to conduct investigations and surveys. In the process of applying AI to the financial auditing of a business, a number of issues are discovered, such as auditors' underappreciation, information security risks, and liability risk uncertainty. On the basis of the problems, related suggestions for improvement are provided, including the cultivation of compound talents, the emphasis on the value of auditors, and the development of a mechanism for accepting responsibility.
Zhang, Xin, Sun, Hongyu, He, Zhipeng, Gu, MianXue, Feng, Jingyu, Zhang, Yuqing.  2022.  VDBWGDL: Vulnerability Detection Based On Weight Graph And Deep Learning. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :186–190.
Vulnerability detection has always been an essential part of maintaining information security, and the existing work can significantly improve the performance of vulnerability detection. However, due to the differences in representation forms and deep learning models, various methods still have some limitations. In order to overcome this defect, We propose a vulnerability detection method VDBWGDL, based on weight graphs and deep learning. Firstly, it accurately locates vulnerability-sensitive keywords and generates variant codes that satisfy vulnerability trigger logic and programmer programming style through code variant methods. Then, the control flow graph is sliced for vulnerable code keywords and program critical statements. The code block is converted into a vector containing rich semantic information and input into the weight map through the deep learning model. According to specific rules, different weights are set for each node. Finally, the similarity is obtained through the similarity comparison algorithm, and the suspected vulnerability is output according to different thresholds. VDBWGDL improves the accuracy and F1 value by 3.98% and 4.85% compared with four state-of-the-art models. The experimental results prove the effectiveness of VDBWGDL.
ISSN: 2325-6664
Shakhov, Vladimir.  2022.  Sequential Statistical Analysis-Based Method for Attacks Detection in Cognitive Radio Networks. 2022 27th Asia Pacific Conference on Communications (APCC). :663–666.
This Cognitive radio networks are vulnerable to specific intrusions due to the unique cognitive characteristics of these networks. This DoS attacks are known as the Primary User Emulation Attack and the Spectrum Sensing Data Falsification. If the intruder behavior is not statistically identical to the behavior of the primary users, intrusion detection techniques based on observing the energy of the received signals can be used. Both machine learning-based intrusion detection and sequential statistical analysis can be effectively applied. However, in some cases, statistical sequential analysis has some advantages in dealing with such challenges. This paper discusses aspects of using statistical sequential analysis methods to detect attacks in Cognitive radio networks.
2023-04-14
Wu, Min-Hao, Huang, Jian-Hung, Chen, Jian-Xin, Wang, Hao-Jyun, Chiu, Chen-Yu.  2022.  Machine Learning to Identify Bitcoin Mining by Web Browsers. 2022 2nd International Conference on Computation, Communication and Engineering (ICCCE). :66—69.
In the recent development of the online cryptocurrency mining platform, Coinhive, numerous websites have employed “Cryptojacking.” They may need the unauthorized use of CPU resources to mine cryptocurrency and replace advertising income. Web cryptojacking technologies are the most recent attack in information security. Security teams have suggested blocking Cryptojacking scripts by using a blacklist as a strategy. However, the updating procedure of the static blacklist has not been able to promptly safeguard consumers because of the sharp rise in “Cryptojacking kidnapping”. Therefore, we propose a Cryptojacking identification technique based on analyzing the user's computer resources to combat the assault technology known as “Cryptojacking kidnapping.” Machine learning techniques are used to monitor changes in computer resources such as CPU changes. The experiment results indicate that this method is more accurate than the blacklist system and, in contrast to the blacklist system, manually updates the blacklist regularly. The misuse of online Cryptojacking programs and the unlawful hijacking of users' machines for Cryptojacking are becoming worse. In the future, information security undoubtedly addresses the issue of how to prevent Cryptojacking and abduction. The result of this study helps to save individuals from unintentionally becoming miners.
Li, Xiling, Ma, Zhaofeng, Luo, Shoushan.  2022.  Blockchain-Oriented Privacy Protection with Online and Offline Verification in Cross-Chain System. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :177–181.
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Peng, Jiaqi, Yang, Ke, Xuan, Jiaxing, Li, Da, Fan, Lei.  2022.  Research on Trust Measurement of Terminal Equipment Based on Device Fingerprint. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :151–155.
Nowadays, network information security is of great concern, and the measurement of the trustworthiness of terminal devices is of great significance to the security of the entire network. The measurement method of terminal device security trust still has the problems of high complexity, lack of universality. In this paper, the device fingerprint library of device access network terminal devices is first established through the device fingerprint mixed collection method; Secondly, the software and hardware features of the device fingerprint are used to increase the uniqueness of the device identification, and the multi- dimensional standard metric is used to measure the trustworthiness of the terminal device; Finally, Block chain technology is used to store the fingerprint and standard model of network access terminal equipment on the chain. To improve the security level of network access devices, a device access method considering the trust of terminal devices from multiple perspectives is implemented.