Biblio
The accessibility of the internet and mobile platforms has risen dramatically due to digital technology innovations. Web applications have opened up a variety of market possibilities by supplying consumers with a wide variety of digital technologies that benefit from high accessibility and functionality. Around the same time, web application protection continues to be an important challenge on the internet, and security must be taken seriously in order to secure confidential data. The threat is caused by inadequate validation of user input information, software developed without strict adherence to safety standards, vulnerability of reusable software libraries, software weakness, and so on. Through abusing a website's vulnerability, introduers are manipulating the user's information in order to exploit it for their own benefit. Then introduers inject their own malicious code, stealing passwords, manipulating user activities, and infringing on customers' privacy. As a result, information is leaked, applications malfunction, confidential data is accessed, etc. To mitigate the aforementioned issues, stacking ensemble based classifier model for Cross-site scripting (XSS) attack detection is proposed. Furthermore, the stacking ensembles technique is used in combination with different machine learning classification algorithms like k-Means, Random Forest and Decision Tree as base-learners to reliably detect XSS attack. Logistic Regression is used as meta-learner to predict the attack with greater accuracy. The classification algorithms in stacking model explore the problem in their own way and its results are given as input to the meta-learner to make final prediction, thus improving the overall detection accuracy of XSS attack in stacking than the individual models. The simulation findings demonstrate that the proposed model detects XSS attack successfully.
Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.
Black-box web application scanners are used to detect vulnerabilities in the web application without any knowledge of the source code. Recent research had shown their poor performance in detecting stored Cross-Site Scripting (XSS) and stored SQL Injection (SQLI). The detection efficiency of four black-box scanners on two testbeds, Wackopicko and Custom testbed Scanit (obtained from [5]), have been analyzed in this paper. The analysis showed that the scanners need to be improved for better detection of multi-step stored XSS and stored SQLI. This study involves the interaction between the selected scanners and the web application to measure their efficiency of inserting proper attack vectors in appropriate fields. The results of this research paper indicate that there is not much difference in terms of performance between open-source and commercial black-box scanners used in this research. However, it may depend on the policies and trust issues of the companies using them according to their needs. Some of the possible recommendations are provided to improve the detection rate of stored SQLI and stored XSS vulnerabilities in this paper. The study concludes that the state-of-the-art of automated black-box web application scanners in 2020 needs to be improved to detect stored XSS and stored SQLI more effectively.
Today’s rapidly changing world, is observing fast development of QR-code and Blockchain technologies. It is worth noting that these technologies have also received a boost for sharing. The user gets the opportunity to receive / send funds, issue invoices for payment and transfer, for example, Bitcoin using QR-code. This paper discusses the security of using the symbiosis of Blockchain and QR-code technologies, and the vulnerabilities that arise in this case. The following vulnerabilities were considered: fake QR generators, stickers for cryptomats, phishing using QR-codes, create Malicious QR-Codes for Hack Phones and Other Scanners. The possibility of creating the following malicious QR codes while using the QRGen tool was considered: SQL Injections, XSS (Cross-Site Scripting), Command Injection, Format String, XXE (XML External Entity), String Fuzzing, SSI (Server-Side Includes) Injection, LFI (Local File Inclusion) / Directory Traversal.
Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.
Cross-Site Scripting (XSS) is an attack most often carried out by attackers to attack a website by inserting malicious scripts into a website. This attack will take the user to a webpage that has been specifically designed to retrieve user sessions and cookies. Nearly 68% of websites are vulnerable to XSS attacks. In this study, the authors conducted a study by evaluating several machine learning methods, namely Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and Naïve Bayes (NB). The machine learning algorithm is then equipped with the n-gram method to each script feature to improve the detection performance of XSS attacks. The simulation results show that the SVM and n-gram method achieves the highest accuracy with 98%.