Dabush, Lital, Routtenberg, Tirza.
2022.
Detection of False Data Injection Attacks in Unobservable Power Systems by Laplacian Regularization. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). :415—419.
The modern electrical grid is a complex cyber-physical system, and thus is vulnerable to measurement losses and attacks. In this paper, we consider the problem of detecting false data injection (FDI) attacks and bad data in unobservable power systems. Classical bad-data detection methods usually assume observable systems and cannot detect stealth FDI attacks. We use the smoothness property of the system states (voltages) w.r.t. the admittance matrix, which is also the Laplacian of the graph representation of the grid. First, we present the Laplacian-based regularized state estimator, which does not require full observability of the network. Then, we derive the Laplacian-regularized generalized likelihood ratio test (LR-GLRT). We show that the LR-GLRT has a component of a soft high-pass graph filter applied to the state estimator. Numerical results on the IEEE 118-bus system demonstrate that the LR-GLRT outperforms other detection approaches and is robust to missing data.
Xin, Wu, Shen, Qingni, Feng, Ke, Xia, Yutang, Wu, Zhonghai, Lin, Zhenghao.
2022.
Personalized User Profiles-based Insider Threat Detection for Distributed File System. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1441—1446.
In recent years, data security incidents caused by insider threats in distributed file systems have attracted the attention of academia and industry. The most common way to detect insider threats is based on user profiles. Through analysis, we realize that based on existing user profiles are not efficient enough, and there are many false positives when a stable user profile has not yet been formed. In this work, we propose personalized user profiles and design an insider threat detection framework, which can intelligently detect insider threats for securing distributed file systems in real-time. To generate personalized user profiles, we come up with a time window-based clustering algorithm and a weighted kernel density estimation algorithm. Compared with non-personalized user profiles, both the Recall and Precision of insider threat detection based on personalized user profiles have been improved, resulting in their harmonic mean F1 increased to 96.52%. Meanwhile, to reduce the false positives of insider threat detection, we put forward operation recommendations based on user similarity to predict new operations that users will produce in the future, which can reduce the false positive rate (FPR). The FPR is reduced to 1.54% and the false positive identification rate (FPIR) is as high as 92.62%. Furthermore, to mitigate the risks caused by inaccurate authorization for users, we present user tags based on operation content and permission. The experimental results show that our proposed framework can detect insider threats more effectively and precisely, with lower FPR and high FPIR.
Liu, Mingchang, Sachidananda, Vinay, Peng, Hongyi, Patil, Rajendra, Muneeswaran, Sivaanandh, Gurusamy, Mohan.
2022.
LOG-OFF: A Novel Behavior Based Authentication Compromise Detection Approach. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
Password-based authentication system has been praised for its user-friendly, cost-effective, and easily deployable features. It is arguably the most commonly used security mechanism for various resources, services, and applications. On the other hand, it has well-known security flaws, including vulnerability to guessing attacks. Present state-of-the-art approaches have high overheads, as well as difficulties and unreliability during training, resulting in a poor user experience and a high false positive rate. As a result, a lightweight authentication compromise detection model that can make accurate detection with a low false positive rate is required.In this paper we propose – LOG-OFF – a behavior-based authentication compromise detection model. LOG-OFF is a lightweight model that can be deployed efficiently in practice because it does not include a labeled dataset. Based on the assumption that the behavioral pattern of a specific user does not suddenly change, we study the real-world authentication traffic data. The dataset contains more than 4 million records. We use two features to model the user behaviors, i.e., consecutive failures and login time, and develop a novel approach. LOG-OFF learns from the historical user behaviors to construct user profiles and makes probabilistic predictions of future login attempts for authentication compromise detection. LOG-OFF has a low false positive rate and latency, making it suitable for real-world deployment. In addition, it can also evolve with time and make more accurate detection as more data is being collected.
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.
2022.
Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
Concepcion, A. R., Sy, C..
2022.
A System Dynamics Model of False News on Social Networking Sites. 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :0786—0790.
Over the years, false news has polluted the online media landscape across the world. In this “post-truth” era, the narratives created by false news have now come into fruition through dismantled democracies, disbelief in science, and hyper-polarized societies. Despite increased efforts in fact-checking & labeling, strengthening detection systems, de-platforming powerful users, promoting media literacy and awareness of the issue, false news continues to be spread exponentially. This study models the behaviors of both the victims of false news and the platform in which it is spread— through the system dynamics methodology. The model was used to develop a policy design by evaluating existing and proposed solutions. The results recommended actively countering confirmation bias, restructuring social networking sites’ recommendation algorithms, and increasing public trust in news organizations.
Wang, Juan, Ma, Chenjun, Li, Ziang, Yuan, Huanyu, Wang, Jie.
2022.
ProcGuard: Process Injection Behaviours Detection Using Fine-grained Analysis of API Call Chain with Deep Learning. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :778—785.
New malware increasingly adopts novel fileless techniques to evade detection from antivirus programs. Process injection is one of the most popular fileless attack techniques. This technique makes malware more stealthy by writing malicious code into memory space and reusing the name and port of the host process. It is difficult for traditional security software to detect and intercept process injections due to the stealthiness of its behavior. We propose a novel framework called ProcGuard for detecting process injection behaviors. This framework collects sensitive function call information of typical process injection. Then we perform a fine-grained analysis of process injection behavior based on the function call chain characteristics of the program, and we also use the improved RCNN network to enhance API analysis on the tampered memory segments. We combine API analysis with deep learning to determine whether a process injection attack has been executed. We collect a large number of malicious samples with process injection behavior and construct a dataset for evaluating the effectiveness of ProcGuard. The experimental results demonstrate that it achieves an accuracy of 81.58% with a lower false-positive rate compared to other systems. In addition, we also evaluate the detection time and runtime performance loss metrics of ProcGuard, both of which are improved compared to previous detection tools.
Benfriha, Sihem, Labraoui, Nabila.
2022.
Insiders Detection in the Uncertain IoD using Fuzzy Logic. 2022 International Arab Conference on Information Technology (ACIT). :1—6.
Unmanned aerial vehicles (UAVs) and various network entities deployed on the ground can communicate with each other over the Internet of Drones (IoD), a network architecture designed expressly to allow communications between heterogenous entities. Drone technology has a wide range of uses, including on-demand package delivery, traffic and wild life surveillance, inspection of infrastructure and search, rescue and agriculture. However, IoD systems are vulnerable to numerous attacks, The main goal is to develop an all-encompassing security model that can be used to analyze security concerns in various UAV-based systems. With exceptional flexibility and increasing efficiency, trust management is a promising alternative to traditional detection methods. In a heterogeneous environment, it is also compatible with other security mechanisms. In this article, we present a fuzzy logic as an Insider Detection technique which calculate sensor data trust and assessing node behavior. To build confidence throughout the entire IoD, our proposal divides trust into two parts: Data trust and Node trust. This is in contrast to earlier models. Experimental results show that our solution is effective in terms of False positive ratio and Average of end-to-end delay.
Eze, Emmanuel O., Keates, Simeon, Pedram, Kamran, Esfahani, Alireza, Odih, Uchenna.
2022.
A Context-Based Decision-Making Trust Scheme for Malicious Detection in Connected and Autonomous Vehicles. 2022 International Conference on Computing, Electronics & Communications Engineering (iCCECE). :31—36.
The fast-evolving Intelligent Transportation Systems (ITS) are crucial in the 21st century, promising answers to congestion and accidents that bother people worldwide. ITS applications such as Connected and Autonomous Vehicle (CAVs) update and broadcasts road incident event messages, and this requires significant data to be transmitted between vehicles for a decision to be made in real-time. However, broadcasting trusted incident messages such as accident alerts between vehicles pose a challenge for CAVs. Most of the existing-trust solutions are based on the vehicle's direct interaction base reputation and the psychological approaches to evaluate the trustworthiness of the received messages. This paper provides a scheme for improving trust in the received incident alert messages for real-time decision-making to detect malicious alerts between CAVs using direct and indirect interactions. This paper applies artificial intelligence and statistical data classification for decision-making on the received messages. The model is trained based on the US Department of Technology Safety Pilot Deployment Model (SPMD). An Autonomous Decision-making Trust Scheme (ADmTS) that incorporates a machine learning algorithm and a local trust manager for decision-making has been developed. The experiment showed that the trained model could make correct predictions such as 98% and 0.55% standard deviation accuracy in predicting false alerts on the 25% malicious data
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.
2022.
False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
Manjula, P., Baghavathi Priya, S..
2022.
Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
Huang, Fanwei, Li, Qiuping, Zhao, Junhui.
2022.
Trust Management Model of VANETs Based on Machine Learning and Active Detection Technology. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :412—416.
With the continuous development of vehicular ad hoc networks (VANETs), it brings great traffic convenience. How-ever, it is still a difficult problem for malicious vehicles to spread false news. In order to ensure the reliability of the message, an effective trust management model must be established, so that malicious vehicles can be detected and false information can be identified in the vehicle ad hoc network in time. This paper presents a trust management model based on machine learning and active detection technology, which evaluates the trust of vehicles and events to ensure the credibility of communication. Through the active detection mechanism, vehicles can detect the indirect trust of their neighbors, which improves the filtering speed of malicious nodes. Bayesian classifier can judge whether a vehicle is a malicious node by the state information of the vehicle, and can limit the behavior of the malicious vehicle at the first time. The simulation results show that our scheme can obviously restrict malicious vehicles.
Nazih, Ossama, Benamar, Nabil, Lamaazi, Hanane, Chaoui, Habiba.
2022.
Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.
2022.
Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
Hamzah, Anwer Sattar, Abdul-Rahaim, Laith Ali.
2022.
Smart Homes Automation System Using Cloud Computing Based Enhancement Security. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :164—169.
Smart home automation is one of the prominent topics of the current era, which has attracted the attention of researchers for several years due to smart home automation contributes to achieving many capabilities, which have had a real and vital impact on our daily lives, such as comfort, energy conservation, environment, and security. Home security is one of the most important of these capabilities. Many efforts have been made on research and articles that focus on this area due to the increased rate of crime and theft. The present paper aims to build a practically implemented smart home that enhances home control management and monitors all home entrances that are often vulnerable to intrusion by intruders and thieves. The proposed system depends on identifying the person using the face detection and recognition method and Radio Frequency Identification (RFID) as a mechanism to enhance the performance of home security systems. The cloud server analyzes the received member identification to retrieve the permission to enter the home. The system showed effectiveness and speed of response in transmitting live captures of any illegal intrusive activity at the door or windows of the house. With the growth and expansion of the concept of smart homes, the amount of information transmitted, information security weakness, and response time disturbances, to reduce latency, data storage, and maintain information security, by employing Fog computing architecture in smart homes as a broker between the IoT layer and the cloud servers and the user layer.
Singh, Kiran Deep, Singh, Prabhdeep, Tripathi, Vikas, Khullar, Vikas.
2022.
A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
Elmoghrapi, Asma N., Bleblo, Ahmed, Younis, Younis A..
2022.
Fog Computing or Cloud Computing: a Study. 2022 International Conference on Engineering & MIS (ICEMIS). :1—6.
Cloud computing is a new term that refers to the service provisioned over the Internet. It is considered one of the foremost prevailing standards within the Data Innovation (IT) industry these days. It offers capable handling and capacity assets as on-demand administrations at diminished fetched, and progressed productivity. It empowers sharing computing physical assets among cloud computing tents and offers on-demand scaling with taken toll effectiveness. Moreover, cloud computing plays an important role in data centers because they house virtually limitless computational and storage capacities that businesses and end-users can access and use via the Internet. In the context of cloud computing, fog computing refers to bringing services to the network’s edge. Fog computing gives cloud-like usefulness, such as information capacity space, systems, and compute handling control, yet with a more noteworthy scope and nearness since fog nodes are found close to d-user edge gadgets, leveraging assets and diminishing inactivity. The concepts of cloud computing and fog computing will be explored in this paper, and their features will be contrasted to determine the differences between them. Over 25 factors have been used to compare them.
Chandra Bose, S.Subash, R, Vinay D, Raju, Yeligeti, Bhavana, N., Sengupta, Anirbit, Singh, Prabhishek.
2022.
A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.
2022.
Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
Muhammad Nabi, Masooma, Shah, Munam Ali.
2022.
A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.
The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.
Mukherjee, Pratyusa, Kumar Barik, Rabindra.
2022.
Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.
Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.
Schulze, Jan-Philipp, Sperl, Philip, Böttinger, Konstantin.
2022.
Anomaly Detection by Recombining Gated Unsupervised Experts. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Anomaly detection has been considered under several extents of prior knowledge. Unsupervised methods do not require any labelled data, whereas semi-supervised methods leverage some known anomalies. Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel data-driven anomaly detection method called ARGUE. Our method is not only applicable to unsupervised and semi-supervised environments, but also profits from prior knowledge of self-supervised settings. We designed ARGUE as a combination of dedicated expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. Our evaluation motivates that prior knowledge about the normal data distribution may be as valuable as known anomalies.
Qasaimeh, Ghazi, Al-Gasaymeh, Anwar, Kaddumi, Thair, Kilani, Qais.
2022.
Expert Systems and Neural Networks and their Impact on the Relevance of Financial Information in the Jordanian Commercial Banks. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—7.
The current study aims to discern the impact of expert systems and neural network on the Jordanian commercial banks. In achieving the objective, the study employed descriptive analytical approach and the population consisted of the 13 Jordanian commercial banks listed at Amman Stock Exchange-ASE. The primary data were obtained by using a questionnaire with 188 samples distributed to a group of accountants, internal auditors, and programmers, who constitute the study sample. The results unveiled that there is an impact of the application of expert systems and neural networks on the relevance of financial information in Jordanian commercial banks. It also revealed that there is a high level of relevance of financial information in Jordanian commercial banks. Accordingly, the study recommended the need for banks to keep pace with the progress and development taking place in connection to the process and environment of expertise systems by providing modern and developed devices to run various programs and expert systems. It also recommended that, Jordanian commercial banks need to rely more on advanced systems to operate neural network technology more efficiently.
Liu, Yu, Zhou, Chenqian.
2022.
Research on Intelligent Accounting System Based on Intelligent Financial Data Sheet Analysis System Considering Complex Data Mining. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :724—728.
Research on intelligent accounting system based on intelligent financial data sheet analysis system considering complex data mining is conducted in the paper. The expert audit system extracts business records from the business database according to the specified audit conditions, and the program automatically calculates the total amount of the amount data items, and then compares it with the standard or normal business, reflecting the necessary information such as differences and also possible audit trails. In order to find intrusion behaviors and traces, data collection is carried out from multiple points in the network system. The collection content includes system logs, network data packets, important files, and the status and the behavior of the user activities. Furthermore, complex data mining model is combined for the systematic analysis on the system performance. The simulation on the collected data is provided to the validate the performance.
Parshyna, Olena, Parshyna, Marharyta, Parshyn, Yurii, Chumak, Tetiana, Yarmolenko, Ljudmila, Shapoval, Andrii.
2022.
Expert Assessment of Information Protection in Complex Energy Systems. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES). :1—6.
The paper considers the important problem of information protection in complex energy systems. The expert assessment of information protection in complex energy systems method has been developed. Based on the conducted research and data processing, a method of forming the analytical basis for decision-making aimed at ensuring the competitiveness of complex information protection systems has been developed.
Telny, Andrey V., Monakhov, Mikhail Yu..
2022.
Possibility of the Intruder Type Determination in Systems of Physical Protection of Objects. 2022 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
This article proposes a method for determining the intruder type in the systems of physical protection of objects. An intruder trying to enter the territory, buildings or premises of the facility has to overcome typical engineering reinforcement elements of building structures. Elements of building structures are equipped with addressable alarm sensors. The intruder type is proposed to be determined according to its equipment by comparing the time of actually overcoming the building structure elements with the expert estimates. The time to overcome the elements of building structures is estimated by the time between successive responses of the security alarm address sensors. The intruder's awareness of the protection object is proposed to be assessed by tracking the route of its movement on the object using address sensors. Determining the intruder type according to the data of the security alarm systems can be used for the in-process tactics control of the security group actions.