Visible to the public Biblio

Filters: Keyword is industrial control system  [Clear All Filters]
2023-08-25
Chen, Qingqing, Zhou, Mi, Cai, Ziwen, Su, Sheng.  2022.  Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
2023-08-24
Chen, Xuehong, Wang, Zi, Yang, Shuaifeng.  2022.  Research on Information Security Protection of Industrial Internet Oriented CNC System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1818–1822.
Machine tool is known as the mother of industry. CNC machine tool is the embodiment of modern automatic control productivity. In the context of the rapid development of the industrial Internet, a large number of equipment and systems are interconnected through the industrial Internet, realizing the flexible adaptation from the supply side to the demand side. As the a typical core system of industrial Internet, CNC system is facing the threat of industrial virus and network attack. The problem of information security is becoming more and more prominent. This paper analyzes the security risks of the existing CNC system from the aspects of terminal security, data security and network security. By comprehensively using the technologies of data encryption, identity authentication, digital signature, access control, secure communication and key management, this paper puts forward a targeted security protection and management scheme, which effectively strengthens the overall security protection ability.
ISSN: 2693-289X
Bhosale, Pushparaj, Kastner, Wolfgang, Sauter, Thilo.  2022.  Automating Safety and Security Risk Assessment in Industrial Control Systems: Challenges and Constraints. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
Currently, risk assessment of industrial control systems is static and performed manually. With the increased convergence of operational technology and information technology, risk assessment has to incorporate a combined safety and security analysis along with their interdependency. This paper investigates the data inputs required for safety and security assessments, also if the collection and utilisation of such data can be automated. A particular focus is put on integrated assessment methods which have the potential for automation. In case the overall process to identify potential hazards and threats and analyze what could happen if they occur can be automated, manual efforts and cost of operation can be reduced, thus also increasing the overall performance of risk assessment.
Cao, Yaofu, Li, Tianquan, Li, Xiaomeng, Zhao, Jincheng, Liu, Junwen, Yan, Junlu.  2022.  Research on network security behavior audit method of power industrial control system operation support cloud platform based on FP-Growth association rule algorithm. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :409–412.
With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
Zhang, Yuqiang, Hao, Zhiqiang, Hu, Ning, Luo, Jiawei, Wang, Chonghua.  2022.  A virtualization-based security architecture for industrial control systems. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :94–101.
The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Zhang, Ge, Zhang, Zheyu, Sun, Jun, Wang, Zun, Wang, Rui, Wang, Shirui, Xie, Chengyun.  2022.  10 Gigabit industrial thermal data acquisition and storage solution based on software-defined network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :616–619.
With the wide application of Internet technology in the industrial control field, industrial control networks are getting larger and larger, and the industrial data generated by industrial control systems are increasing dramatically, and the performance requirements of the acquisition and storage systems are getting higher and higher. The collection and analysis of industrial equipment work logs and industrial timing data can realize comprehensive management and continuous monitoring of industrial control system work status, as well as intrusion detection and energy efficiency analysis in terms of traffic and data. In the face of increasingly large realtime industrial data, existing log collection systems and timing data gateways, such as packet loss and other phenomena [1], can not be more complete preservation of industrial control network thermal data. The emergence of software-defined networking provides a new solution to realize massive thermal data collection in industrial control networks. This paper proposes a 10-gigabit industrial thermal data acquisition and storage scheme based on software-defined networking, which uses software-defined networking technology to solve the problem of insufficient performance of existing gateways.
Zhang, Deng, Zhao, Jiang, Ding, Dingding, Gao, Hanjun.  2022.  Networked Control System Information Security Platform. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :738–742.
With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Trifonov, Roumen, Manolov, Slavcho, Tsochev, Georgi, Pavlova, Galya, Raynova, Kamelia.  2022.  Analytical Choice of an Effective Cyber Security Structure with Artificial Intelligence in Industrial Control Systems. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1–6.
The new paradigm of industrial development, called Industry 4.0, faces the problems of Cybersecurity, and as it has already manifested itself in Information Systems, focuses on the use of Artificial Intelligence tools. The authors of this article build on their experience with the use of the above mentioned tools to increase the resilience of Information Systems against Cyber threats, approached to the choice of an effective structure of Cyber-protection of Industrial Systems, primarily analyzing the objective differences between them and Information Systems. A number of analyzes show increased resilience of the decentralized architecture in the management of large-scale industrial processes to the centralized management architecture. These considerations provide sufficient grounds for the team of the project to give preference to the decentralized structure with flock behavior for further research and experiments. The challenges are to determine the indicators which serve to assess and compare the impacts on the controlled elements.
Gong, Xiao, Li, Mengwei, Zhao, Zhengbin, Cui, Dengqi.  2022.  Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Sun, Jun, Li, Yang, Zhang, Ge, Dong, Liangyu, Yang, Zitao, Wang, Mufeng, Cai, Jiahe.  2022.  Data traceability scheme of industrial control system based on digital watermark. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :322–325.
The fourth industrial revolution has led to the rapid development of industrial control systems. While the large number of industrial system devices connected to the Internet provides convenience for production management, it also exposes industrial control systems to more attack surfaces. Under the influence of multiple attack surfaces, sensitive data leakage has a more serious and time-spanning negative impact on industrial production systems. How to quickly locate the source of information leakage plays a crucial role in reducing the loss from the attack, so there are new requirements for tracing sensitive data in industrial control information systems. In this paper, we propose a digital watermarking traceability scheme for sensitive data in industrial control systems to address the above problems. In this scheme, we enhance the granularity of traceability by classifying sensitive data types of industrial control systems into text, image and video data with differentiated processing, and achieve accurate positioning of data sources by combining technologies such as national secret asymmetric encryption and hash message authentication codes, and mitigate the impact of mainstream watermarking technologies such as obfuscation attacks and copy attacks on sensitive data. It also mitigates the attacks against the watermarking traceability such as obfuscation attacks and copy attacks. At the same time, this scheme designs a data flow watermark monitoring module on the post-node of the data source to monitor the unauthorized sensitive data access behavior caused by other attacks.
2023-08-18
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
Bukharev, Dmitriy A., Ragozin, Andrey N., Sokolov, Alexander N..  2022.  Method for Determining the Optimal Number of Clusters for ICS Information Processes Analysis During Cyberattacks Based on Hierarchical Clustering. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :309—312.
The development of industrial automation tools and the integration of industrial and corporate networks in order to improve the quality of production management have led to an increase in the risks of successful cyberattacks and, as a result, to the necessity to solve the problems of practical information security of industrial control systems (ICS). Detection of cyberattacks of both known and unknown types is could be implemented as anomaly detection in dynamic information processes recorded during the operation of ICS. Anomaly detection methods do not require preliminary analysis and labeling of the training sample. In the context of detecting attacks on ICS, cluster analysis is used as one of the methods that implement anomaly detection. The application of hierarchical cluster analysis for clustering data of ICS information processes exposed to various cyberattacks is studied, the problem of choosing the level of the cluster hierarchy corresponding to the minimum set of clusters aggregating separately normal and abnormal data is solved. It is shown that the Ward method of hierarchical cluster division produces the best division into clusters. The next stage of the study involves solving the problem of classifying the formed minimum set of clusters, that is, determining which cluster is normal and which cluster is abnormal.
Shen, Wendi, Yang, Genke.  2022.  An error neighborhood-based detection mechanism to improve the performance of anomaly detection in industrial control systems. 2022 International Conference on Mechanical, Automation and Electrical Engineering (CMAEE). :25—29.
Anomaly detection for devices (e.g, sensors and actuators) plays a crucial role in Industrial Control Systems (ICS) for security protection. The typical framework of deep learning-based anomaly detection includes a model to predict or reconstruct the state of devices and a detection mechanism to determine anomalies. The majority of anomaly detection methods use a fixed threshold detection mechanism to detect anomalous points. However, the anomalies caused by cyberattacks in ICSs are usually continuous anomaly segments. In this paper, we propose a novel detection mechanism to detect continuous anomaly segments. Its core idea is to determine the start and end times of anomalies based on the continuity characteristics of anomalies and the dynamics of error. We conducted experiments on the two real-world datasets for performance evaluation using five baselines. The F1 score increased by 3.8% on average in the SWAT dataset and increased by 15.6% in the WADI dataset. The results show a significant improvement in the performance of baselines using an error neighborhood-based continuity detection mechanism in a real-time manner.
2023-05-19
Lu, Jie, Ding, Yong, Li, Zhenyu, Wang, Chunhui.  2022.  A timestamp-based covert data transmission method in Industrial Control System. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :526—532.
Covert channels are data transmission methods that bypass the detection of security mechanisms and pose a serious threat to critical infrastructure. Meanwhile, it is also an effective way to ensure the secure transmission of private data. Therefore, research on covert channels helps us to quickly detect attacks and protect the security of data transmission. This paper proposes covert channels based on the timestamp of the Internet Control Message Protocol echo reply packet in the Linux system. By considering the concealment, we improve our proposed covert channels, ensuring that changing trends in the timestamp of modified consecutive packets are consistent with consecutive regular packets. Besides, we design an Iptables rule based on the current system time to analyze the performance of the proposed covert channels. Finally, it is shown through experiments that the channels complete the private data transmission in the industrial control network. Furthermore, the results demonstrate that the improved covert channels offer better performance in concealment, time cost, and the firewall test.
2023-02-03
Zou, Zhenwan, Yin, Jun, Yang, Ling, Luo, Cheng, Fei, Jiaxuan.  2022.  Research on Nondestructive Vulnerability Detection Technology of Power Industrial Control System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1591–1594.

The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.

ISSN: 2693-289X

2022-08-26
Mao, Zeyu, Sahu, Abhijeet, Wlazlo, Patrick, Liu, Yijing, Goulart, Ana, Davis, Katherine, Overbye, Thomas J..  2021.  Mitigating TCP Congestion: A Coordinated Cyber and Physical Approach. 2021 North American Power Symposium (NAPS). :1–6.
The operation of the modern power grid is becoming increasingly reliant on its underlying communication network, especially within the context of the rapidly growing integration of Distributed Energy Resources (DERs). This tight cyber-physical coupling brings uncertainties and challenges for the power grid operation and control. To help operators manage the complex cyber-physical environment, ensure the integrity, and continuity of reliable grid operation, a two-stage approach is proposed that is compatible with current ICS protocols to improve the deliverability of time critical operations. With the proposed framework, the impact Denial of Service (DoS) attack can have on a Transmission Control Protocol (TCP) session could be effectively prevented and mitigated. This coordinated approach combines the efficiency of congestion window reconfiguration and the applicability of physical-only mitigation approaches. By expanding the state and action space to encompass both the cyber and physical domains. This approach has been proven to outperform the traditional, physical-only method, in multiple network congested scenarios that were emulated in a real-time cyber-physical testbed.
2022-06-09
Qiang, Rong.  2021.  Improved Depth Neural Network Industrial Control Security Algorithm Based On PCA Dimension Reduction. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :891–894.
In order to improve the security and anti-interference ability of industrial control system, this paper proposes an improved industrial neural network defense method based on the PCA dimension reduction and the improved deep neural network. Firstly, the proposed method reduces the dimensionality of the industrial data using the dimension reduction theory of principal component analysis (PCA). Then the deep neural network extracts the features of the network. Finally, the softmax classifier classifies industrial data. Experiment results show that compared with unintegrated algorithm, this method achieves higher recognition accuracy and has great application potential.
Atluri, Venkata, Horne, Jeff.  2021.  A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise. SoutheastCon 2021. :1–5.
Cyber-attacks on our Nation's Critical Infrastructure are growing. In this research, a Cyber Threat Intelligence (CTI) framework is proposed, developed, and tested. The results of the research, using 5 different simulated attacks on a dataset from an Industrial Control System (ICS) testbed, are presented with the extracted IOCs. The Bagging Decision Trees model showed the highest performance of testing accuracy (94.24%), precision (0.95), recall (0.93), and F1-score (0.94) among the 9 different machine learning models studied.
Jie, Chen.  2021.  Information Security Risk Assessment of Industrial Control System Based on Hybrid Genetic Algorithms. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :423–426.
In order to solve the problem of quantitative assessment of information security risks in industrial control systems, this paper proposes a method of information security risk assessment for industrial control systems based on modular hybrid genetic algorithm. Combining with the characteristics of industrial control systems, the use of hybrid genetic algorithm evidence theory to identify, evaluate and assess assets and threats, and ultimately come to the order of the size of the impact of security threats on the specific industrial control system information security. This method can provide basis for making decisions to reduce information security risks in the control system from qualitative and quantitative aspects.
2022-04-25
Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.  2021.  ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.

Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.

2022-03-25
Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

2022-01-25
Nakhodchi, Sanaz, Zolfaghari, Behrouz, Yazdinejad, Abbas, Dehghantanha, Ali.  2021.  SteelEye: An Application-Layer Attack Detection and Attribution Model in Industrial Control Systems using Semi-Deep Learning. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–8.
The security of Industrial Control Systems is of high importance as they play a critical role in uninterrupted services provided by Critical Infrastructure operators. Due to a large number of devices and their geographical distribution, Industrial Control Systems need efficient automatic cyber-attack detection and attribution methods, which suggests us AI-based approaches. This paper proposes a model called SteelEye based on Semi-Deep Learning for accurate detection and attribution of cyber-attacks at the application layer in industrial control systems. The proposed model depends on Bag of Features for accurate detection of cyber-attacks and utilizes Categorical Boosting as the base predictor for attack attribution. Empirical results demonstrate that SteelEye remarkably outperforms state-of-the-art cyber-attack detection and attribution methods in terms of accuracy, precision, recall, and Fl-score.
2021-11-08
Shang, Wenli, Zhang, Xiule, Chen, Xin, Liu, Xianda, Chen, Chunyu, Wang, Xiaopeng.  2020.  The Research and Application of Trusted Startup of Embedded TPM. 2020 39th Chinese Control Conference (CCC). :7669–7676.
In view of the security threats caused by the code execution vulnerability of the industrial control system, design the trusted security architecture of the industrial control system based on the embedded system. From the trusted startup of industrial control equipment, the safety protection for industrial control system is completed. The scheme is based on TPM and Xilinx Zynq-7030 to build an industrial trusted computing environment and complete the trusted startup process. Experiment shows that this method can effectively prevent the destruction of malicious code during the startup process of embedded system and provide technical support for the construction of trusted computing environment of industrial control system.
2021-09-07
Zhang, Yaofang, Wang, Bailing, Wu, Chenrui, Wei, Xiaojie, Wang, Zibo, Yin, Guohua.  2020.  Attack Graph-Based Quantitative Assessment for Industrial Control System Security. 2020 Chinese Automation Congress (CAC). :1748–1753.
Industrial control systems (ICSs) are facing serious security challenges due to their inherent flaws, and emergence of vulnerabilities from the integration with commercial components and networks. To that end, assessing the security plays a vital role for current industrial enterprises which are responsible for critical infrastructure. This paper accomplishes a complex task of quantitative assessment based on attack graphs in order to look forward critical paths. For the purpose of application to a large-scale heterogeneous ICSs, we propose a flexible attack graph generation algorithm is proposed with the help of the graph data model. Hereafter, our quantitative assessment takes a consideration of graph indicators on specific nodes and edges to get the security metrics. In order to improve results of obtaining the critical attack path, we introduced a formulating selection rule, considering the asset value of industrial control devices. The experimental results show validation and verification of the proposed method.
2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).