Visible to the public Biblio

Found 5734 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2020-09-11
Shu, Yujin, Xu, Yongjin.  2019.  End-to-End Captcha Recognition Using Deep CNN-RNN Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :54—58.
With the development of the Internet, the captcha technology has also been widely used. Captcha technology is used to distinguish between humans and machines, namely Completely Automated Public Turing test to tell Computers and Humans Apart. In this paper, an end-to-end deep CNN-RNN network model is constructed by studying the captcha recognition technology, which realizes the recognition of 4-character text captcha. The CNN-RNN model first constructs a deep residual convolutional neural network based on the residual network structure to accurately extract the input captcha picture features. Then, through the constructed variant RNN network, that is, the two-layer GRU network, the deep internal features of the captcha are extracted, and finally, the output sequence is the 4-character captcha. The experiments results show that the end-to-end deep CNN-RNN network model has a good performance on different captcha datasets, achieving 99% accuracy. And experiment on the few samples dataset which only has 4000 training samples also shows an accuracy of 72.9 % and a certain generalization ability.
Kansuwan, Thivanon, Chomsiri, Thawatchai.  2019.  Authentication Model using the Bundled CAPTCHA OTP Instead of Traditional Password. 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON). :5—8.
In this research, we present identity verification using the “Bundled CAPTCHA OTP” instead of using the traditional password. This includes a combination of CAPTCHA and One Time Password (OTP) to reduce processing steps. Moreover, a user does not have to remember any password. The Bundled CAPTCHA OTP which is the unique random parameter for any login will be used instead of a traditional password. We use an e-mail as the way to receive client-side the Bundled CAPTCHA OTP because it is easier to apply without any problems compare to using mobile phones. Since mobile phones may be crashing, lost, change frequently, and easier violent access than e-mail. In this paper, we present a processing model of the proposed system and discuss advantages and disadvantages of the model.
2020-09-08
Mavridis, Ilias, Karatza, Helen.  2019.  Lightweight Virtualization Approaches for Software-Defined Systems and Cloud Computing: An Evaluation of Unikernels and Containers. 2019 Sixth International Conference on Software Defined Systems (SDS). :171–178.
Software defined systems use virtualization technologies to provide an abstraction of the hardware infrastructure at different layers. Ultimately, the adoption of software defined systems in all cloud infrastructure components will lead to Software Defined Cloud Computing. Nevertheless, virtualization has already been used for years and is a key element of cloud computing. Traditionally, virtual machines are deployed in cloud infrastructure and used to execute applications on common operating systems. New lightweight virtualization technologies, such as containers and unikernels, appeared later to improve resource efficiency and facilitate the decomposition of big monolithic applications into multiple, smaller services. In this work, we present and empirically evaluate four popular unikernel technologies, Docker containers and Docker LinuxKit. We deployed containers both on bare metal and on virtual machines. To fairly evaluate their performance, we created similar applications for unikernels and containers. Additionally, we deployed full-fledged database applications ported on both virtualization technologies. Although in bibliography there are a few studies which compare unikernels and containers, in our study for the first time, we provide a comprehensive performance evaluation of clean-slate and legacy unikernels, Docker containers and Docker LinuxKit.
Fang, Chao, Wang, Zhuwei, Huang, Huawei, Si, Pengbo, Yu, F. Richard.  2019.  A Stackelberg-Based Optimal Profit Split Scheme in Information-Centric Wireless Networks. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The explosive growth of mobile traffic in the Internet makes content delivery a challenging issue to cope with. To promote efficiency of content distribution and reduce network cost, Internet Service Providers (ISPs) and content providers (CPs) are motivated to cooperatively work. As a clean-slate solution, nowadays Information-Centric Networking architectures have been proposed and widely researched, where the thought of in-network caching, especially edge caching, can be applied to mobile wireless networks to fundamentally address this problem. Considered the profit split issue between ISPs and CPs and the influence of content popularity is largely ignored, in this paper, we propose a Stackelberg-based optimal network profit split scheme for content delivery in information-centric wireless networks. Simulation results show that the performance of our proposed model is comparable to its centralized solution and obviously superior to current ISP-CP cooperative schemes without considering cache deployment in the network.
Guimarães, Carlos, Quevedo, José, Ferreira, Rui, Corujo, Daniel, Aguiar, Rui L..  2019.  Content Retrieval while Moving Across IP and NDN Network Architectures. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Research on Future Internet has gained traction in recent years, with a variety of clean-slate network architectures being proposed. The realization of such proposals may lead to a period of coexistence with the current Internet, creating a heterogeneous Future Internet. In such a vision, mobile nodes (MNs) can move across access networks supporting different network architectures, while being able to maintain the access to content during this movement. In order to support such scenarios, this paper proposes an inter-network architecture mobility framework that allows MNs to move across different network architectures without losing access to the contents being accessed. The usage of the proposed framework is exemplified and evaluated in a mobility scenario targeting IP and NDN network architectures in a content retrieval use case. The obtained results validate the proposed framework while highlighting the impact on the overall communication between the MN and content source.
Perello, Jordi, Lopez, Albert, Careglio, Davide.  2019.  Experimenting with Real Application-specific QoS Guarantees in a Large-scale RINA Demonstrator. 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :31–36.
This paper reports the definition, setup and obtained results of the Fed4FIRE + medium experiment ERASER, aimed to evaluate the actual Quality of Service (QoS) guarantees that the clean-slate Recursive InterNetwork Architecture (RINA) can deliver to heterogeneous applications at large-scale. To this goal, a 37-Node 5G metro/regional RINA network scenario, spanning from the end-user to the server where applications run in a datacenter has been configured in the Virtual Wall experimentation facility. This scenario has initially been loaded with synthetic application traffic flows, with diverse QoS requirements, thus reproducing different network load conditions. Next,their experienced QoS metrics end-to-end have been measured with two different QTA-Mux (i.e., the most accepted candidate scheduling policy for providing RINA with its QoS support) deployment scenarios. Moreover, on this RINA network scenario loaded with synthetic application traffic flows, a real HD (1080p) video streaming demonstration has also been conducted, setting up video streaming sessions to end-users at different network locations, illustrating the perceived Quality of Experience (QoE). Obtained results in ERASER disclose that, by appropriately deploying and configuring QTA-Mux, RINA can yield effective QoS support, which has provided perfect QoE in almost all locations in our demo when assigning video traffic flows the highest (i.e., Gold) QoS Cube.
Ma, Zhaohui, Yang, Yan.  2019.  Optimization Strategy of Flow Table Storage Based on “Betweenness Centrality”. 2019 IEEE International Conference on Power Data Science (ICPDS). :76–79.
With the gradual progress of cloud computing, big data, network virtualization and other network technology. The traditional network architecture can no longer support this huge business. At this time, the clean slate team defined a new network architecture, SDN (Software Defined Network). It has brought about tremendous changes in the development of today's networks. The controller sends the flow table down to the switch, and the data flow is forwarded through matching flow table items. However, the current flow table resources of the SDN switch are very limited. Therefore, this paper studies the technology of the latest SDN Flow table optimization at home and abroad, proposes an efficient optimization scheme of Flow table item on the betweenness centrality through the main road selection algorithm, and realizes related applications by setting up experimental topology. Experiments show that this scheme can greatly reduce the number of flow table items of switches, especially the more hosts there are in the topology, the more obvious the experimental effect is. And the experiment proves that the optimization success rate is over 80%.
Campioni, Lorenzo, Tortonesi, Mauro, Wissingh, Bastiaan, Suri, Niranjan, Hauge, Mariann, Landmark, Lars.  2019.  Experimental Evaluation of Named Data Networking (NDN) in Tactical Environments. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :43–48.
Tactical edge networks represent a uniquely challenging environment from the communications perspective, due to their limited bandwidth and high node mobility. Several middleware communication solutions have been proposed to address those issues, adopting an evolutionary design approach that requires facing quite a few complications to provide applications with a suited network programming model while building on top of the TCP/IP stack. Information Centric Networking (ICN), instead, represents a revolutionary, clean slate approach that aims at replacing the entire TCP/IP stack with a new communication paradigm, better suited to cope with fluctuating channel conditions and network disruptions. This paper, stemmed from research conducted within NATO IST-161 RTG, investigates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption. We evaluated an NDN-based Blue Force Tracking (BFT) dissemination application within the Anglova scenario emulation environment, and found that NDN obtained better-than-expected results in terms of delivery ratio and latency, at the expense of a relatively high bandwidth consumption.
Yang, Bowen, Chen, Xiang, Xie, Jinsen, Li, Sugang, Zhang, Yanyong, Yang, Jian.  2019.  Multicast Design for the MobilityFirst Future Internet Architecture. 2019 International Conference on Computing, Networking and Communications (ICNC). :88–93.
With the advent of fifth generation (5G) network and increasingly powerful mobile devices, people can conveniently obtain network resources wherever they are and whenever they want. However, the problem of mobility support in current network has not been adequately solved yet, especially in inter-domain mobile scenario, which leads to poor experience for mobile consumers. MobilityFirst is a clean slate future Internet architecture which adopts a clean separation between identity and network location. It provides new mechanisms to address the challenge of wireless access and mobility at scale. However, MobilityFirst lacks effective ways to deal with multicast service over mobile networks. In this paper, we design an efficient multicast mechanism based on MobilityFirst architecture and present the deployment in current network at scale. Furthermore, we propose a hierarchical multicast packet header with additional destinations to achieve low-cost dynamic multicast routing and provide solutions for both the multicast source and the multicast group members moving in intra- or inter-domain. Finally, we deploy a multicast prototype system to evaluate the performance of the proposed multicast mechanism.
2020-09-04
Ushakova, Margarita, Ushakov, Yury, Polezhaev, Petr, Shukhman, Alexandr.  2019.  Wireless Self-Organizing Wi-Fi and Bluetooth based Network For Internet Of Things. 2019 International Conference on Engineering and Telecommunication (EnT). :1—5.
Modern Internet of Things networks are often proprietary, although based on open standards, or are built on the basis of conventional Wi-Fi network, which does not allow the use of energy-saving modes and limits the range of solutions used. The paper is devoted to the study and comparison of two solutions based on Wi-Fi and Bluetooth with the functions of a self-organizing network and switching between transmission channels. The power consumption in relation to specific actions and volumes of transmitted data is investigated; a conclusion is drawn on the conditions for the application of a particular technology.
Ishak, Muhammad Yusry Bin, Ahmad, Samsiah Binti, Zulkifli, Zalikha.  2019.  Iot Based Bluetooth Smart Radar Door System Via Mobile Apps. 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). :142—145.
{In the last few decades, Internet of things (IOT) is one of the key elements in industrial revolution 4.0 that used mart phones as one of the best technological advances' intelligent device. It allows us to have power over devices without people intervention, either remote or voice control. Therefore, the “Smart Radar Door “system uses a microcontroller and mobile Bluetooth module as an automation of smart door lock system. It is describing the improvement of a security system integrated with an Android mobile phone that uses Bluetooth as a wireless connection protocol and processing software as a tool in order to detect any object near to the door. The mob ile device is required a password as authentication method by using microcontroller to control lock and unlock door remotely. The Bluetooth protocol was chosen as a method of communication between microcontroller and mobile devices which integrated with many Android devices in secured protocol}.
Karim, Hassan, Rawat, Danda.  2019.  A Trusted Bluetooth Performance Evaluation Model for Brain Computer Interfaces. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :47—52.
Bluetooth enables excellent mobility in Brain Computer Interface (BCI) research and other use cases including ambulatory care, telemedicine, fitness tracking and mindfulness training. Although significant research exists for an all-encompassing BCI performance rating, almost all the literature addresses performance in terms of brain state or brain function classification accuracy. For the few published experiments that address BCI hardware performance, they too, focused on improving classification accuracy. This paper explores some of the more recent studies and proposes a trusted performance rating for BCI applications based on the enhanced privacy, yet reduced bandwidth needs of mobile EEG-based BCI applications. This paper proposes a set of Bluetooth operating parameters required to meet the performance, usability and privacy requirements of reliable and secure mobile neuro-feedback applications. It presents a rating model, "Trusted Mobile BCI", based on those operating parameters, and validated the model with studies that leveraged mobile BCI technology.
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
Pallavi, Sode, Narayanan, V Anantha.  2019.  An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :694—698.
BLE is used to transmit and receive data between sensors and devices. Most of the IOT devices employ BLE for wireless communication because it suits their requirements such as less energy constraints. The major security vulnerabilities in BLE protocol can be used by attacker to perform MITM attacks and hence violating confidentiality and integrity of data. Although BLE 4.2 prevents most of the attacks by employing elliptic-curve diffie-Hellman to generate LTK and encrypt the data, still there are many devices in the market that are using BLE 4.0, 4.1 which are vulnerable to attacks. This paper shows the simple demonstration of possible attacks on BLE devices that use various existing tools to perform spoofing, MITM and firmware attacks. We also discussed the security, privacy and its importance in BLE devices.
Almiani, Muder, Razaque, Abdul, Yimu, Liu, khan, Meer Jaro, Minjie, Tang, Alweshah, Mohammed, Atiewi, Saleh.  2019.  Bluetooth Application-Layer Packet-Filtering For Blueborne Attack Defending. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :142—148.
In recent years, the application of Bluetooth has always been the highly debated topic among the researches. Through the Bluetooth protocol, Bluetooth can implement the data switching in short distance between various devices. Nevertheless, BlueBorne Attack makes the seemingly stable Bluetooth protocols full of vulnerabilities. Our research will concentrate on predicting the BlueBorne Attack with the following directions: the working mechanism, the working methods and effective range of BlueBorne. Based on the comprehensive review of recent peer-reviewed researches, this project provides a new model based on application layer to solve the security problem of BlueBorne. The paper asserts that compared with the previous research, the unique model has better consequence with highly stability.
Tian, Dave Jing, Hernandez, Grant, Choi, Joseph I., Frost, Vanessa, Johnson, Peter C., Butler, Kevin R. B..  2019.  LBM: A Security Framework for Peripherals within the Linux Kernel. 2019 IEEE Symposium on Security and Privacy (SP). :967—984.

Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.

Ghori, Muhammad Rizwan, Wan, Tat-Chee, Anbar, Mohammed, Sodhy, Gian Chand, Rizwan, Amna.  2019.  Review on Security in Bluetooth Low Energy Mesh Network in Correlation with Wireless Mesh Network Security. 2019 IEEE Student Conference on Research and Development (SCOReD). :219—224.

Wireless Mesh Networks (WMN) are becoming inevitable in this world of high technology as it provides low cost access to broadband services. Moreover, the technologists are doing research to make WMN more reliable and secure. Subsequently, among wireless ad-hoc networking technologies, Bluetooth Low Energy (BLE) is gaining high degree of importance among researchers due to its easy availability in the gadgets and low power consumption. BLE started its journey from version 4.0 and announced the latest version 5 with mesh support capability. BLE being a low power and mesh supported technology is nowadays among the hot research topics for the researchers. Many of the researchers are working on BLE mesh technology to make it more efficient and smart. Apart from other variables of efficiency, like all communication networks, mesh network security is also of a great concern. In view of the aforesaid, this paper provides a comprehensive review on several works associated to the security in WMN and BLE mesh networks and the research related to the BLE security protocols. Moreover, after the detailed research on related works, this paper has discussed the pros and cons of the present developed mesh security mechanisms. Also, at the end after extracting the curx from the present research on WMN and BLE mesh security, this research study has devised some solutions as how to mitigate the BLE mesh network security lapses.

Sevier, Seth, Tekeoglu, Ali.  2019.  Analyzing the Security of Bluetooth Low Energy. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1—5.
Internet of Things devices have spread to near ubiquity this decade. All around us now lies an invisible mesh of communication from devices embedded in seemingly everything. Inevitably some of that communication flying around our heads will contain data that must be protected or otherwise shielded from tampering. The responsibility to protect this sensitive information from malicious actors as it travels through the air then falls upon the standards used to communicate this data. Bluetooth Low Energy (BLE) is one of these standards, the aim of this paper is to put its security standards to test. By attempting to exploit its vulnerabilities we can see how secure this standard really is. In this paper, we present steps for analyzing the security of BLE devices using open-source hardware and software.
Carpentier, Eleonore, Thomasset, Corentin, Briffaut, Jeremy.  2019.  Bridging The Gap: Data Exfiltration In Highly Secured Environments Using Bluetooth IoTs. 2019 IEEE 37th International Conference on Computer Design (ICCD). :297—300.
IoT devices introduce unprecedented threats into home and professional networks. As they fail to adhere to security best practices, they are broadly exploited by malicious actors to build botnets or steal sensitive information. Their adoption challenges established security standard as classic security measures are often inappropriate to secure them. This is even more problematic in sensitive environments where the presence of insecure IoTs can be exploited to bypass strict security policies. In this paper, we demonstrate an attack against a highly secured network using a Bluetooth smart bulb. This attack allows a malicious actor to take advantage of a smart bulb to exfiltrate data from an air gapped network.
Baek, Ui-Jun, Ji, Se-Hyun, Park, Jee Tae, Lee, Min-Seob, Park, Jun-Sang, Kim, Myung-Sup.  2019.  DDoS Attack Detection on Bitcoin Ecosystem using Deep-Learning. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—4.
Since Bitcoin, the first cryptocurrency that applied blockchain technology was developed by Satoshi Nakamoto, the cryptocurrency market has grown rapidly. Along with this growth, many vulnerabilities and attacks are threatening the Bitcoin ecosystem, which is not only at the bitcoin network-level but also at the service level that applied it, according to the survey. We intend to analyze and detect DDoS attacks on the premise that bitcoin's network-level data and service-level DDoS attacks with bitcoin are associated. We evaluate the results of the experiment according to the proposed metrics, resulting in an association between network-level data and service-level DDoS attacks of bitcoin. In conclusion, we suggest the possibility that the proposed method could be applied to other blockchain systems.
Saad, Muhammad, Cook, Victor, Nguyen, Lan, Thai, My T., Mohaisen, Aziz.  2019.  Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1175—1187.
Bitcoin is the leading example of a blockchain application that facilitates peer-to-peer transactions without the need for a trusted intermediary. This paper considers possible attacks related to the decentralized network architecture of Bitcoin. We perform a data driven study of Bitcoin and present possible attacks based on spatial and temporal characteristics of its network. Towards that, we revisit the prior work, dedicated to the study of centralization of Bitcoin nodes over the Internet, through a fine-grained analysis of network distribution, and highlight the increasing centralization of the Bitcoin network over time. As a result, we show that Bitcoin is vulnerable to spatial, temporal, spatio-temporal, and logical partitioning attacks with an increased attack feasibility due to network dynamics. We verify our observations by simulating attack scenarios and the implications of each attack on the Bitcoin . We conclude with suggested countermeasures.
Ichsani, Yuditha, Deyani, Resisca Audia, Bahaweres, Rizal Broer.  2019.  The Cryptocurrency Simulation using Elliptic Curve Cryptography Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1—8.
On each cryptocurrency transaction, a high-level security is needed to protect user data as well as data on the transaction. At this stage, it takes the appropriate algorithm in securing transactions with more efficient processing time. The Elliptic Curve Cryptography (ECC) is one of the cryptography algorithms which has high-level security, and ECC is often compared with the Rivest, Shamir, and Adleman (RSA) algorithm because it has a security level that is almost the same but has some differences that make ECC is superior compared to the RSA algorithm, so that the ECC algorithm can optimize cryptocurrency security in the transaction process. The purpose of this study is to simulate the bitcoin transactions using cryptography algorithms. This study uses the ECC algorithm as the algorithm ECDH and ECDSA key exchange as the algorithm for signing and verifying. The comparison results of ECC and RSA processing time is 1:25, so the ECC is more efficient. The total processing time of ECC is 0,006 seconds and RSA is 0,152 seconds. The researcher succeeded to implement the ECC algorithm as securing algorithms in mining process of 3 scenarios, normal, failed, and fake bitcoin transactions.
Walck, Matthew, Wang, Ke, Kim, Hyong S..  2019.  TendrilStaller: Block Delay Attack in Bitcoin. 2019 IEEE International Conference on Blockchain (Blockchain). :1—9.
We present TendrilStaller, an eclipse attack targeting at Bitcoin's peer-to-peer network. TendrilStaller enables an adversary to delay block propagation to a victim for 10 minutes. The adversary thus impedes the victim from getting the latest blockchain state. It only takes as few as one Bitcoin full node and two light weight nodes to perform the attack. The light weight nodes perform a subset of the functions of a full Bitcoin node. The attack exploits a recent block propagation protocol introduced in April 2016. The protocol prescribes a Bitcoin node to select 3 neighbors that can send new blocks unsolicited. These neighbors are selected based on their recent performance in providing blocks quickly. The adversary induces the victim to select 3 attack nodes by having attack nodes send valid blocks to the victim more quickly than other neighbors. For this purpose, the adversary deploys a handful of light weight nodes so that the adversary itself receives new blocks faster. The adversary then performs the attack to delay blocks propagated to the victim. We implement the attack on top of current default Bitcoin protocol We deploy the attack nodes in multiple locations around the globe and randomly select victim nodes. Depending on the round-trip time between the adversary and the victim, 50%-85% of the blocks could be delayed to the victim. We further show that the adoption of light weight nodes greatly increases the attack probability by 15% in average. Finally, we propose several countermeasures to mitigate this eclipse attack.
Elliott, Sean.  2019.  Nash Equilibrium of Multiple, Non-Uniform Bitcoin Block Withholding Attackers. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :144—151.
This research analyzes a seemingly malicious behavior known as a block withholding (BWH) attack between pools of cryptocurrency miners in Bitcoin-like systems featuring blockchain distributed databases. This work updates and builds on a seminal paper, The Miner's Dilemma, which studied a simplified scenario and showed that a BWH attack can be rational behavior that is profitable for the attacker. The new research presented here provides an in-depth profit analysis of a more complex and realistic BWH attack scenario, which includes mutual attacks between multiple, non-uniform Bitcoin mining pools. As a result of mathematical analysis and MATLAB modeling, this paper illustrates the Nash equilibrium conditions of a system of independent mining pools with varied mining rates and computes the equilibrium rates of mutual BWH attack. The analysis method quantifies the additional profit the largest pools extract from the system at the expense of the smaller pools. The results indicate that while the presence of BWH is a net negative for smaller pools, they must participate in BWH to maximize their remaining profits, and the results quantify the attack rates the smaller pools must maintain. Also, the smallest pools maximize profit by not attacking at all-that is, retaliation is not a rational move for them.
Kumar, M Ashok, Radhesyam, V., SrinivasaRao, B.  2019.  Front-End IoT Application for the Bitcoin based on Proof of Elapsed Time (PoET). 2019 Third International Conference on Inventive Systems and Control (ICISC). :646—649.
There are some registry agreements that may be appropriate for the Internet of Things (IoT), including Bitcoin, Hyperledger Fabric and IOTA. This article presents quickly and examines them in terms of the progress of Internet applications. Block-dependent IoT applications can consolidate the chain's rationale (smart contracts) and front-end, portable or front-end web applications. We present three possible designs for BC IoT front-end applications. They vary depending on the Bitcoin block chain customer (neighborhood gadget, remote server) and the key location needed to manage active exchanges. The vital requirements of these projects, which use Bitcoin to organize constructive exchanges, are the volumes of information, the area and time of the complete block and block block, and the entry of the Bitcoin store. The implications of these surveys show that it is unlikely that a full Bitcoin distributor will continue to operate reliably with a mandatory IoT gadget. Then, designing with remote Bitcoin customers is, in all respects, a suitable methodology in which there are two minor alternatives and vary in key storage / management. Similarly, we recommend using the design with a unique match between the IoT gadget and the remote blockchain client to reduce system activity and improve security. We hope you also have the ability to operate with versatile verses with low control and low productivity. Our review eliminates the contradictions between synthesis methodologies, but the final choice for a particular registration agreement and the original technique completely depends on the proposed use case.