Biblio
Physical perturbations are performed against embedded systems that can contain valuable data. Such devices and in particular smart cards are targeted because potential attackers hold them. The embedded system security must hold against intentional hardware failures that can result in software errors. In a malicious purpose, an attacker could exploit such errors to find out secret data or disrupt a transaction. Simulation techniques help to point out fault injection vulnerabilities and come at an early stage in the development process. This paper proposes a generic fault injection simulation tool that has the particularity to embed the injection mechanism into the smart card source code. By its embedded nature, the Embedded Fault Simulator (EFS) allows us to perform fault injection simulations and side-channel analyses simultaneously. It makes it possible to achieve combined attacks, multiple fault attacks and to perform backward analyses. We appraise our approach on real, modern and complex smart card systems under data and control flow fault models. We illustrate the EFS capacities by performing a practical combined attack on an Advanced Encryption Standard (AES) implementation.
Cryptography and steganography are the two major fields available for data security. While cryptography is a technique in which the information is scrambled in an unintelligent gibberish fashion during transmission, steganography focuses on concealing the existence of the information. Combining both domains gives a higher level of security in which even if the use of covert channel is revealed, the true information will not be exposed. This paper focuses on concealing multiple secret images in a single 24-bit cover image using LSB substitution based image steganography. Each secret image is encrypted before hiding in the cover image using Arnold Transform. Results reveal that the proposed method successfully secures the high capacity data keeping the visual quality of transmitted image satisfactory.
Discrete Cosine Transform (DCT) is used in JPEG compression, image encryption, image watermarking and channel estimation. In this paper, an Application Specific Processor (ASP) for DCT based applications is designed and implemented to Field Programmable Gate Array (FPGA). One dimensional DCT and IDCT hardwares which have fully parallel architecture have been implemented and connected to MicroBlaze softcore processer. To show a basic application of ASP, DCT based image watermarking example is studied in this system.
In this paper, we investigate the performance of multiple-input multiple-output aided coded interleave division multiple access (IDMA) system for secured medical image transmission through wireless communication. We realize the MIMO profile using four transmit antennas at the base station and three receive antennas at the mobile station. We achieve bandwidth efficiency using discrete wavelet transform (DWT). Further we implement Arnold's Cat Map (ACM) encryption algorithm for secured medical transmission. We consider celulas as medical image which is used to differentiate between normal cell and carcinogenic cell. In order to accommodate more users' image, we consider IDMA as accessing scheme. At the mobile station (MS), we employ non-linear minimum mean square error (MMSE) detection algorithm to alleviate the effects of unwanted multiple users image information and multi-stream interference (MSI) in the context of downlink transmission. In particular, we investigate the effects of three types of delay-spread distributions pertaining to Stanford university interim (SUI) channel models for encrypted image transmission of MIMO-IDMA system. From our computer simulation, we reveal that DWT based coded MIMO- IDMA system with ACM provides superior picture quality in the context of DL communication while offering higher spectral efficiency and security.
Turbo code has been one of the important subjects in coding theory since 1993. This code has low Bit Error Rate (BER) but decoding complexity and delay are big challenges. On the other hand, considering the complexity and delay of separate blocks for coding and encryption, if these processes are combined, the security and reliability of communication system are guaranteed. In this paper a secure decoding algorithm in parallel on General-Purpose Graphics Processing Units (GPGPU) is proposed. This is the first prototype of a fast and parallel Joint Channel-Security Coding (JCSC) system. Despite of encryption process, this algorithm maintains desired BER and increases decoding speed. We considered several techniques for parallelism: (1) distribute decoding load of a code word between multiple cores, (2) simultaneous decoding of several code words, (3) using protection techniques to prevent performance degradation. We also propose two kinds of optimizations to increase the decoding speed: (1) memory access improvement, (2) the use of new GPU properties such as concurrent kernel execution and advanced atomics to compensate buffering latency.
To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.
Side Channel Attacks (SCA) using power measurements are a known method of breaking cryptographic algorithms such as AES. Published research into attacks on AES frequently target only AES-128, and often target only the core Electronic Code-Book (ECB) algorithm, without discussing surrounding issues such as triggering, along with breaking the initialization vector. This paper demonstrates a complete attack on a secure bootloader, where the firmware files have been encrypted with AES-256-CBC. A classic Correlation Power Analysis (CPA) attack is performed on AES-256 to recover the complete 32-byte key, and a CPA attack is also used to attempt recovery of the initialization vector (IV).
This paper is nominated for an image protection scheme in the area of government sectors based on discrete cosine transformation with digital watermarking scheme. A cover image has broken down into 8 × 8 non overlapped blocks and transformed from spatial domain into frequency domain. Apply DCT version II of the DCT family to each sub block of the original image. Then embed the watermarking image into the sub blocks. Apply IDCT of version II to send the image through communication channel with watermarked image. To recover the watermarked image, apply DCT and watermarking formula to the sub blocks. The experimental results show that the proposed watermarking procedure gives high security and watermarked image retrieved successfully.
The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.
This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.
We design polynomial time schemes for secure message transmission over arbitrary networks, in the presence of an eavesdropper, and where each edge corresponds to an erasure channel with public feedback. Our schemes are described through linear programming (LP) formulations, that explicitly select (possibly different) sets of paths for key-generation and message sending. Although our LPs are not always capacity-achieving, they outperform the best known alternatives in the literature, and extend to incorporate several interesting scenaria.
Data security has always been a major concern and a huge challenge for governments and individuals throughout the world since early times. Recent advances in technology, such as the introduction of cloud computing, make it even a bigger challenge to keep data secure. In parallel, high throughput mobile devices such as smartphones and tablets are designed to support these new technologies. The high throughput requires power-efficient designs to maintain the battery-life. In this paper, we propose a novel Joint Security and Advanced Low Density Parity Check (LDPC) Coding (JSALC) method. The JSALC is composed of two parts: the Joint Security and Advanced LDPC-based Encryption (JSALE) and the dual-step Secure LDPC code for Channel Coding (SLCC). The JSALE is obtained by interlacing Advanced Encryption System (AES)-like rounds and Quasi-Cyclic (QC)-LDPC rows into a single primitive. Both the JSALE code and the SLCC code share the same base quasi-cyclic parity check matrix (PCM) which retains the power efficiency compared to conventional systems. We show that the overall JSALC Frame-Error-Rate (FER) performance outperforms other cryptcoding methods by over 1.5 dB while maintaining the AES-128 security level. Moreover, the JSALC enables error resilience and has higher diffusion than AES-128.
Todays' era of internet-of-things, cloud computing and big data centers calls for more fresh graduates with expertise in digital data processing techniques such as compression, encryption and error correcting codes. This paper describes a project-based elective that covers these three main digital data processing techniques and can be offered to three different undergraduate majors electrical and computer engineering and computer science. The course has been offered successfully for three years. Registration statistics show equal interest from the three different majors. Assessment data show that students have successfully completed the different course outcomes. Students' feedback show that students appreciate the knowledge they attain from this elective and suggest that the workload for this course in relation to other courses of equal credit is as expected.
The video streaming between the sender and the receiver involves multiple unsecured hops where the video data can be illegally copied if the nodes run malicious forwarding logic. This paper introduces a novel method to stream video data through dual channels using dual data paths. The frames' pixels are also scrambled. The video frames are divided into two frame streams. At the receiver side video is re-constructed and played for a limited time period. As soon as small chunk of merged video is played, it is deleted from video buffer. The approach has been tried to formalize and initial simulation has been done over MATLAB. Preliminary results are optimistic and a refined approach may lead to a formal designing of network layer routing protocol with corrections in transport layer.
Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.
Security in mobile handsets of telecommunication standards such as GSM, Project 25 and TETRA is very important, especially when governments and military forces use handsets and telecommunication devices. Although telecommunication could be quite secure by using encryption, coding, tunneling and exclusive channel, attackers create new ways to bypass them without the knowledge of the legitimate user. In this paper we introduce a new, simple and economical circuit to warn the user in cases where the message is not encrypted because of manipulation by attackers or accidental damage. This circuit not only consumes very low power but also is created to sustain telecommunication devices in aspect of security and using friendly. Warning to user causes the best practices of telecommunication devices without wasting time and energy for fault detection.
This paper proposes a novel plan of compacting encoded pictures with helper data. The substance manager scrambles the first uncompressed pictures furthermore creates some helper data, which will be utilized for information pressure and picture recreation. At that point, the channel supplier who can't get to the first substance may pack the encoded information by a quantization technique with ideal parameters that are gotten from a piece of helper data and a pressure proportion mutilation criteria, and transmit the packed information, which incorporate a scrambled sub-picture, the quantized information, the quantization parameters and an alternate piece of assistant data. At recipient side, the key picture substance can be reproduced utilizing the packed scrambled information and the mystery key.
A novel secure arithmetic image coding algorithm based on Two-dimensional Generalized Logistic Mapping is proposed. Firstly, according to the digital image size m×n, two 2D chaotic sequences are generated by logistic chaotic mapping. Then, the original image data is scrambled by sorting the chaotic sequence. Secondly, the chaotic sequence is optimized to generate key stream which is used to mask the image data. Finally, to generate the final output, the coding interval order is controlled by the chaotic sequence during the arithmetic coding process. Experiment results show the proposed secure algorithm has good robustness and can be applied in the arithmetic coder for multimedia such as video and audio with little loss of coding efficiency.
GSM network is the most widely used communication network for mobile phones in the World. However the security of the voice communication is the main issue in the GSM network. This paper proposes the technique for secure end to end communication over GSM network. The voice signal is encrypted at real time using digital techniques and transmitted over the GSM network. At receiver end the same decoding algorithm is used to extract the original speech signal. The speech trans-coding process of the GSM, severely distort an encrypted signal that does not possess the characteristics of speech signal. Therefore, it is not possible to use standard modem techniques over the GSM speech channel. The user may choose an appropriate algorithm and hardware platform as per requirement.
Steganography is a method of hiding information, whereas the goal of cryptography is to make data unreadable. Both of these methodologies have their own advantages and disadvantages. Encrypted messages are easily detectable. If someone is spying on communication channel for encrypted message, he/she can easily identify the encrypted messages. Encryption may draw unnecessary attention to the transferred messages. This may lead to cryptanalysis of the encrypted message if the spy tries to know the message. If the encryption technique is not strong enough, the message may be deciphered. In contrast, Steganography tries to hide the data from third party by smartly embedding the data to some other file which is not at all related to the message. Here care is to be taken to minimize the modification of the container file in the process of embedding data. But the disadvantage of steganography is that it is not as secure as cryptography. In the present method the authors have introduced three-step security. Firstly the secret message is encrypted using bit level columnar transposition method introduced by Nath et al and after that the encrypted message is embedded in some image file along with its size. Finally the modified image is encoded into a QR Code TM. The entire method has also been implemented for the Android mobile environment. This method may be used to transfer confidential message through Android mobile phone.
The transmission of data over a common transmission media revolute the world of information sharing from personal desktop to cloud computing. But the risk of the information theft has increased in the same ratio by the third party working on the same channel. The risk can be avoided using the suitable encryption algorithm. Using the best suited algorithm the transmitted data will be encrypted before placing it on the common channel. Using the public key or the private key the encrypted data can be decrypted by the authenticated user. It will avoid the risk of information theft by the unauthenticated user. In this work we have proposed an encryption algorithm which uses the ASCII code to encrypt the plain text. The common key will be used by sender or receiver to encrypt and decrypt the text for secure communication.
Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subject to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).
Secret key establishment is considered to be one of the main challenging issues in cryptography. Many security algorithms are implemented in practice using complicated mathematical methods to exchange secret keys, but those methods are not desirable in power limited terminals such as cellular and sensor networks. In this paper, we propose a physical layer method for exchanging secret key bits in precoding based multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed method uniquely relates the key bits to the indices of the precoding matrix used for MIMO channel precoding. The basic idea of the technique is to utilize a MIMO-OFDM precoding codebook. Comparative analysis with respect to the average number of mismatch bits, named key error rate (KER), shows an interesting lead for the new method relative to existing work. In addition, it will be shown that the proposed technique requires lower computation per byte per secret key.