Biblio
Filters: Keyword is Collaboration [Clear All Filters]
Stochastic Optimization for Residential Demand Response under Time of Use. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). :1–6.
.
2020. Demand response (DR) is one of the most economical methods for peak demand reduction, renewable energy integration and ancillary service support. Residential electrical energy consumption takes approximately 33% of the total electricity usage and hence has great potentials in DR applications. However, residential DR encounters various challenges such as small individual magnitude, stochastic consuming patterns and privacy issues. In this study, we propose a stochastic optimal mechanism to tackle these issues and try to reveal the benefits from residential DR implementation. Stochastic residential load (SRL) models, a generation cost prediction (GCP) model and a stochastic optimal load aggregation (SOLA) model are developed. A set of uniformly distributed scalers is introduced into the SOLA model to efficiently avoid the peak demand rebound problem in DR applications. The SOLA model is further transformed into a deterministic LP model. Time-of-Use (TOU) tariff is adopted as the price structure because of its similarity and popularity. Case studies show that the proposed mechanism can significantly reduce the peak-to-average power ratio (PAPR) of the load profile as well as the electrical energy cost. Furthermore, the impacts of consumers' participation levels in the DR program are investigated. Simulation results show that the 50% participation level appears as the best case in terms system stability. With the participation level of 80%, consumers' electrical energy cost is minimized. The proposed mechanism can be used by a residential load aggregator (LA) or a utility to plan a DR program, predict its impacts, and aggregate residential loads to minimize the electrical energy cost.
A New Privacy-Preserving Framework Based on Edge-Fog-Cloud Continuum for Load Forecasting. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–8.
.
2020. As an essential part to intelligently fine-grained scheduling, planning and maintenance in smart grid and energy internet, short-term load forecasting makes great progress recently owing to the big data collected from smart meters and the leap forward in machine learning technologies. However, the centralized computing topology of classical electric information system, where individual electricity consumption data are frequently transmitted to the cloud center for load forecasting, tends to violate electric consumers' privacy as well as to increase the pressure on network bandwidth. To tackle the tricky issues, we propose a privacy-preserving framework based on the edge-fog-cloud continuum for smart grid. Specifically, 1) we gravitate the training of load forecasting models and forecasting workloads to distributed smart meters so that consumers' raw data are handled locally, and only the forecasting outputs that have been protected are reported to the cloud center via fog nodes; 2) we protect the local forecasting models that imply electricity features from model extraction attacks by model randomization; 3) we exploit a shuffle scheme among smart meters to protect the data ownership privacy, and utilize a re-encryption scheme to guarantee the forecasting data privacy. Finally, through comprehensive simulation and analysis, we validate our proposed privacy-preserving framework in terms of privacy protection, and computation and communication efficiency.
Secure Standards-Based Reference Architecture for Flexibility Activation and Democratisation. CIRED 2020 Berlin Workshop (CIRED 2020). 2020:584–587.
.
2020. This study presents an open standards-based information system supporting democratisation and consumer empowerment through flexibility activation. This study describes a functional technical reference infrastructure: a secure, standard-based and viable communication backbone for flexibility activation. The infrastructure allows connection, registering, activation and reporting for different types of granular consumer flexibility. The flexibility sources can be directly controllable set points of chargers and stationary batteries, as well as controllable loads. The proposed communication system sees all these flexibility provisions as distributed energy resources in a wider sense, and the architecture allows consumer-level integration of different energy systems. This makes new flexibility sources fully available to the balancing responsible entities in a viable and realistically implementable manner. The proposed reference architecture, as implemented in the FLEXCoop project, relies on established open standards as it is based on the Open Automated Demand Response (OpenADR) and OAuth2/OpenID standards and the corresponding IEC 62746-10 standard, and it covers interfacing towards other relevant standards. The security and access implications are addressed by the OpenID security layer built on top of the OAuth2 and integrated with the OpenADR standard. To address the data protection and privacy aspects, the architecture is designed on the least knowledge principle.
On the Impact of Side Information on Smart Meter Privacy-Preserving Methods. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
.
2020. Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of possible attacks to real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser, which is a Recurrent Neural Network (RNN), is trained by fighting against an adversary network until convergence. To define the objective for training, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches relies on how the privacy term is measured during the training process. The releaser in the CAL method, disposing of supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included.
Distributed Framework via Block-Chain Smart Contracts for Smart Grid Systems against Cyber-Attacks. 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC). :100–105.
.
2020. In this century, the demand for energy is increasing daily, and the need for energy resources has become urgent and inevitable. New ways of generating energy, such as renewable resources that depend on many sources, including the sun and wind energy will contribute to the future of humankind largely and effectively. These renewable sources are facing major challenges that cannot be ignored which also require more researches on appropriate solutions . This has led to the emergence of a new type of network user called prosumer, which causes new challenges such as the intermittent nature of renewable. Smart grids have emerged as a solution to integrate these distributed energy sources. It also provides a mechanism to maintain safety and security for power supply networks. The main idea of smart grids is to facilitate local production and consumption By customers and consumers.Distributed ledger technology (DLT) or Block-chain technology has evolved dramatically since 2008 that coincided with the birth of its first application Bitcoin, which is the first cryptocurrency. This innovation led to sparked in the digital revolution, which provides decentralization, security, and democratization of information storage and transfer systems across numerous sectors/industries. Block-chain can be applied for the sake of the durability and safety of energy systems. In this paper, we will propose a new distributed framework that provides protection based on block-chain technology for energy systems to enhance self-defense capability against those cyber-attacks.
Privacy-Preserving HE-Based Clustering for Load Profiling over Encrypted Smart Meter Data. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
.
2020. Load profiling is to cluster power consumption data to generate load patterns showing typical behaviors of consumers, and thus it has enormous potential applications in smart grid. However, short-interval readings would generate massive smart meter data. Although cloud computing provides an excellent choice to analyze such big data, it also brings significant privacy concerns since the cloud is not fully trustworthy. In this paper, based on a modified vector homomorphic encryption (VHE), we propose a privacy-preserving and outsourced k-means clustering scheme (PPOk M) for secure load profiling over encrypted meter data. In particular, we design a similarity-measuring method that effectively and non-interactively performs encrypted distance metrics. Besides, we present an integrity verification technique to detect the sloppy cloud server, which intends to stop iterations early to save computational cost. In addition, extensive experiments and analysis show that PPOk M achieves high accuracy and performance while preserving convergence and privacy.
Privacy Preservation of Aggregated Data Using Virtual Battery in the Smart Grid. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :106–111.
.
2020. Smart Meters (SM) are IoT end devices used to collect user utility consumption with limited processing power on the edge of the smart grid (SG). While SMs have great applications in providing data analysis to the utility provider and consumers, private user information can be inferred from SMs readings. For preserving user privacy, a number of methods were developed that use perturbation by adding noise to alter user load and hide consumer data. Most methods limit the amount of perturbation noise using differential privacy to preserve the benefits of data analysis. However, additive noise perturbation may have an undesirable effect on billing. Additionally, users may desire to select complete privacy without giving consent to having their data analyzed. We present a virtual battery model that uses perturbation with additive noise obtained from a virtual chargeable battery. The level of noise can be set to make user data differentially private preserving statistics or break differential privacy discarding the benefits of data analysis for more privacy. Our model uses fog aggregation with authentication and encryption that employs lightweight cryptographic primitives. We use Diffie-Hellman key exchange for symmetrical encryption of transferred data and a two-way challenge-response method for authentication.
Privacy-Cost Management in Smart Meters Using Deep Reinforcement Learning. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :929–933.
.
2020. Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a third-party. Recent works have leveraged the availability of energy storage devices, e.g., a rechargeable battery (RB), in order to provide privacy to the consumers with minimal additional energy cost. In this paper, a privacy-cost management unit (PCMU) is proposed based on a model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL). Empirical results evaluated on actual SMs data are presented to compare DDQL with the state-of-the-art, i.e., classical Q-learning (CQL). Additionally, the performance of the method is investigated for two concrete cases where attackers aim to infer the actual demand load and the occupancy status of dwellings. Finally, an abstract information-theoretic characterization is provided.
A Cyber-Resilient Privacy Framework for the Smart Grid with Dynamic Billing Capabilities. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
.
2020. The desired features for the smart grid include dynamic billing capabilities along with consumer privacy protection. Existing aggregation-based privacy frameworks have limitations such as centralized designs prone to single points of failure and/or a high computational overload on the smart meters due to in-network aggregation or complex algorithmic operations. Additionally, these existing schemes do not consider how dynamic billing can be implemented while consumer privacy is preserved. In this paper, a cyber-resilient framework that enables dynamic billing while focusing on consumer privacy preservation is proposed. The distributed design provides a framework for spatio-temporal aggregation and keeps the process lightweight for the smart meters. The comparative analysis of our proposed work with existing work shows a significant improvement in terms of the spatial aggregation overhead, overhead on smart meters and scalability. The paper also discusses the resilience of our framework against privacy attacks.
Individual versus Computer-Supported Collaborative Self-Explanations: How Do Their Writing Analytics Differ? 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :132–134.
.
2020. Researchers have demonstrated the effectiveness of self-explanations (SE) as an instructional practice and study strategy. However, there is a lack of work studying the characteristics of SE responses prompted by collaborative activities. In this paper, we use writing analytics to investigate differences between SE text responses resulting from individual versus collaborative learning activities. A Coh-Metrix analysis suggests that students in the collaborative SE activity demonstrated a higher level of comprehension. Future research should explore how writing analytics can be incorporated into CSCL systems to support student performance of SE activities.
Hardware Attack and Assurance with Machine Learning: A Security Threat to Circuits and Systems. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :i–i.
.
2020. Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. Banking, defence applications and cryptosystems often demand security features, including cryptography, tamper resistance, stealth, and etc., by means of hardware approaches and/or software approaches to prevent data leakages. The hardware physical attacks or commonly known as side channel attacks have been employed to extract the secret keys of the encrypted algorithms implemented in hardware devices by analyzing their physical parameters such as power dissipation, electromagnetic interference and timing information. Altered functions or unauthorized modules may be added to the circuit design during the shipping and manufacturing process, bringing in security threats to the deployed systems. In this presentation, we will discuss hardware assurance from both device level and circuit level, and present how machine learning techniques can be utilized. At the device level, we will first provide an overview of the different cryptography algorithms and present the side channel attacks, particularly the powerful Correlation Power Analysis (CPA) and Correlation Electromagnetic Analysis (CEMA) with a leakage model that can be used to reveal the secret keys of the cryptosystems. We will then discuss several countermeasure techniques and present how highly secured microchips can be designed based on these techniques. At the circuit level, we will provide an overview of manufactured IC circuit analysis through invasive IC delayering and imaging. We then present several machine learning techniques that can be efficiently applied to the retrieval of circuit contact points and connections for further netlist/functional analysis.
Machine Learning Based Recommendation System. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :660–664.
.
2020. Recommender system helps people in decision making by asking their preferences about various items and recommends other items that have not been rated yet and are similar to their taste. A traditional recommendation system aims at generating a set of recommendations based on inter-user similarity that will satisfy the target user. Positive preferences as well as negative preferences of the users are taken into account so as to find strongly related users. Weighted entropy is usedz as a similarity measure to determine the similar taste users. The target user is asked to fill in the ratings so as to identify the closely related users from the knowledge base and top N recommendations are produced accordingly. Results show a considerable amount of improvement in accuracy after using weighted entropy and opposite preferences as a similarity measure.
A Trustworthy Blockchain-Based Decentralised Resource Management System in the Cloud. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). :617–624.
.
2020. Quality Critical Decentralised Applications (QC-DApp) have high requirements for system performance and service quality, involve heterogeneous infrastructures (Clouds, Fogs, Edges and IoT), and rely on the trustworthy collaborations among participants of data sources and infrastructure providers to deliver their business value. The development of the QCDApp has to tackle the low-performance challenge of the current blockchain technologies due to the low collaboration efficiency among distributed peers for consensus. On the other hand, the resilience of the Cloud has enabled significant advances in software-defined storage, networking, infrastructure, and every technology; however, those rich programmabilities of infrastructure (in particular, the advances of new hardware accelerators in the infrastructures) can still not be effectively utilised for QCDApp due to lack of suitable architecture and programming model.
Suitability of Blockchain for Collaborative Intrusion Detection Systems. 2020 12th Annual Undergraduate Research Conference on Applied Computing (URC). :1–6.
.
2020. Cyber-security is indispensable as malicious incidents are ubiquitous on the Internet. Intrusion Detection Systems have an important role in detecting and thwarting cyber-attacks. However, it is more effective in a centralized system but not in peer-to-peer networks which makes it subject to central point failure, especially in collaborated intrusion detection systems. The novel blockchain technology assures a fully distributed security system through its powerful features of transparency, immutability, decentralization, and provenance. Therefore, in this paper, we investigate and demonstrate several methods of collaborative intrusion detection with blockchain to analyze the suitability and security of blockchain for collaborative intrusion detection systems. We also studied the difference between the existing means of the integration of intrusion detection systems with blockchain and categorized the major vulnerabilities of blockchain with their potential losses and current enhancements for mitigation.
Guest Editorial Introduction to the Special Section on Network Science for High-Confidence Cyber-Physical Systems. IEEE Transactions on Network Science and Engineering. 7:764–765.
.
2020. The papers in this special section focus on network science for high confidence cyber-physical systems (CPS) Here CPS refers to the engineered systems that can seamlessly integrate the physical world with the cyber world via advanced computation and communication capabilities. To enable high-confidence CPS for achieving better benefits as well as supporting emerging applications, network science-based theories and methodologies are needed to cope with the ever-growing complexity of smart CPS, to predict the system behaviors, and to model the deep inter-dependencies among CPS and the natural world. The major objective of this special section is to exploit various network science techniques such as modeling, analysis, mining, visualization, and optimization to advance the science of supporting high-confidence CPS for greater assurances of security, safety, scalability, efficiency, and reliability. These papers bring a timely and important research topic. The challenges and opportunities of applying network science approaches to high-confidence CPS are profound and far-reaching.
Conference Name: IEEE Transactions on Network Science and Engineering
Protocols Over Things: A Decentralized Programming Model for the Internet of Things. 53:60–68.
.
2020. Current programming models for developing Internet of Things (IoT) applications are logically centralized and ill-suited for most IoT applications. We contribute Protocols over Things, a decentralized programming model that represents an IoT application via a protocol between the parties involved and provides improved performance over network-level delivery guarantees.
SDN/NFV-Based DDoS Mitigation via Pushback. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
.
2020. Distributed Denial of Service (DDoS) attacks aim at bringing down or decreasing the availability of services for their legitimate users, by exhausting network or server resources. It is difficult to differentiate attack traffic from legitimate traffic as the attack can come from distributed nodes that additionally might spoof their IP addresses. Traditional DoS mitigation solutions fail to defend all kinds of DoS attacks and huge DoS attacks might exceed the processing capacity of routers and firewalls easily. The advent of Software-defined Networking (SDN) and Network Function Virtualization (NFV) has brought a new perspective for network defense. Key features of such technologies like global network view and flexibly positionable security functionality can be used for mitigating DDoS attacks. In this paper, we propose a collaborative DDoS attack mitigation scheme that uses SDN and NFV. We adopt a machine learning algorithm from related work to derive accurate patterns describing DDoS attacks. Our experimental results indicate that our framework is able to differentiate attack and legitimate traffic with high accuracy and in near-realtime. Furthermore, the derived patterns can be used to create OpenFlow (OF) or Firewall rules that can be pushed back into the direction of the attack origin for more efficient and distributed filtering.
A Locality Sensitive Hashing Based Approach for Federated Recommender System. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :836–842.
.
2020. The recommender system is an important application in big data analytics because accurate recommendation items or high-valued suggestions can bring high profit to both commercial companies and customers. To make precise recommendations, a recommender system often needs large and fine-grained data for training. In the current big data era, data often exist in the form of isolated islands, and it is difficult to integrate the data scattered due to privacy security concerns. Moreover, privacy laws and regulations make it harder to share data. Therefore, designing a privacy-preserving recommender system is of paramount importance. Existing privacy-preserving recommender system models mainly adapt cryptography approaches to achieve privacy preservation. However, cryptography approaches have heavy overhead when performing encryption and decryption operations and they lack a good level of flexibility. In this paper, we propose a Locality Sensitive Hashing (LSH) based approach for federated recommender system. Our proposed efficient and scalable federated recommender system can make full use of multiple source data from different data owners while guaranteeing preservation of privacy of contributing parties. Extensive experiments on real-world benchmark datasets show that our approach can achieve both high time efficiency and accuracy under small privacy budgets.
Privacy Enhanced Interface Identifiers in IPv6. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1—6.
.
2020. The Internet Protocol Version 6 (IPV6) proposed to replace IPV4 to solve scalability challenges and improve quality of service and security. Current implementation of IPv6 uses static value that is determined from the Media Access Control (MAC) address as the Interface Identifier (IID). This results in a deterministic IID for each user that is the same regardless of any network changes. This provides an eavesdropper with the ability to easily track the physical location of the communicating nodes using simple tools, such as ping and traceroute. Moreover, this address generation method provides a means to correlate network traffic with a specific user which can be achieved by filtering the IID and traffic analysis. These serious privacy breaches need to be addressed before widespread deployment of IPv6. In this paper we propose a privacy-enhanced method for generating IID which combines different network parameters. The proposed method generates non-deterministic IIDs that is resistance against correlation attack. We validate our approach using Wireshark, ping and traceroute tools and show that our proposed approach achieves better privacy compared to the existing IID generation methods.
Testing IoT Security: The Case Study of an IP Camera. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.
.
2020. While the Internet of Things (IoT) applications and devices expanded rapidly, security and privacy of the IoT devices emerged as a major problem. Current studies reveal that there are significant weaknesses detected in several types of IoT devices moreover in several situations there are no security mechanisms to protect these devices. The IoT devices' users utilize the internet for the purpose of control and connect their machines. IoT application utilization has risen exponentially over time and our sensitive data is captured by IoT devices continuously, unknowingly or knowingly. The motivation behind this paper was the vulnerabilities that exist at the IP cameras. In this study, we undertake a more extensive investigation of IP cameras' vulnerabilities and demonstrate their effect on users' security and privacy through the use of the Kali Linux penetration testing platform and its tools. For this purpose, the paper performs a hands-on test on an IP camera with the name (“Intelligent Onvif YY HD”) to analyzes the security elements of this device. The results of this paper show that IP cameras have several security lacks and weaknesses which these flaws have multiple security impacts on users.
Privacy-Preserving Peer Discovery for Group Management in p2p Networks. 2020 27th Conference of Open Innovations Association (FRUCT). :150—156.
.
2020. The necessity for peer-to-peer (p2p) communications is obvious; current centralized solutions are capturing and storing too much information from the individual people communicating with each other. Privacy concerns with a centralized solution in possession of all the users data are a difficult matter. HELIOS platform introduces a new social-media platform that is not in control of any central operator, but brings the power of possession of the data back to the users. It does not have centralized servers that store and handle receiving/sending of the messages. Instead, it relies on the current open-source solutions available in the p2p communities to propagate the messages to the wanted recipients of the data and/or messages. The p2p communications also introduce new problems in terms of privacy and tracking of the user, as the nodes part of a p2p network can see what data the other nodes provide and ask for. How the sharing of data in a p2p network can be achieved securely, taking into account the user's privacy is a question that has not been fully answered so far. We do not claim we answer this question fully in this paper either, but we propose a set of protocols to help answer one specific problem. Especially, this paper proposes how to privately share data (end-point address or other) of the user between other users, provided that they have previously connected with each other securely, either offline or online.
Preserving Network Privacy on Fine-grain Path-tracking Using P4-based SDN. 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). :129—134.
.
2020. Path-tracking is essential to provide complete information regarding network breach incidents. It records the direction of the attack and its source of origin thus giving the network manager proper information for the next responses. Nevertheless, the existing path-tracking implementations expose the network topology and routing configurations. In this paper, we propose a privacy-aware path-tracking which mystifies network configurations using in-packet bloom filter. We apply our method by using P4 switch to supports a fine-grain (per-packet) path-tracking with dynamic adaptability via in-switch bloom filter computation. We use a hybrid scheme which consists of a destination-based logging and a path finger print-based marking to minimize the redundant path inferring caused by the bloom filter's false positive. For evaluation, we emulate the network using Mininet and BMv2 software switch. We deploy a source routing mechanism to run the evaluations using a limited testbed machine implementing Rocketfuel topology. By using the hybrid marking and logging technique, we can reduce the redundant path to zero percent, ensuring no-collision in the path-inferring. Based on the experiments, it has a lower space efficiency (56 bit) compared with the bloom filter-only solution (128 bit). Our proposed method guarantees that the recorded path remains secret unless the secret keys of every switch are known.
Connection-Free Reliable and Efficient Transport Services in the IP Internet. 2020 16th International Conference on Network and Service Management (CNSM). :1—7.
.
2020. The Internet Transport Protocol (ITP) is introduced to support reliable end-to-end transport services in the IP Internet without the need for end-to-end connections, changes to the Internet routing infrastructure, or modifications to name-resolution services. Results from simulation experiments show that ITP outperforms the Transmission Control Protocol (TCP) and the Named Data Networking (NDN) architecture, which requires replacing the Internet Protocol (IP). In addition, ITP allows transparent content caching while enforcing privacy.
Machine learning-based IP Camera identification system. 2020 International Computer Symposium (ICS). :426—430.
.
2020. With the development of technology, application of the Internet in daily life is increasing, making our connection with the Internet closer. However, with the improvement of convenience, information security has become more and more important. How to ensure information security in a convenient living environment is a question worth discussing. For instance, the widespread deployment of IP-cameras has made great progress in terms of convenience. On the contrary, it increases the risk of privacy exposure. Poorly designed surveillance devices may be implanted with suspicious software, which might be a thorny issue to human life. To effectively identify vulnerable devices, we design an SDN-based identification system that uses machine learning technology to identify brands and probable model types by identifying packet features. The identifying results make it possible for further vulnerability analysis.
Active DNN IP Protection: A Novel User Fingerprint Management and DNN Authorization Control Technique. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :975—982.
.
2020. The training process of deep learning model is costly. As such, deep learning model can be treated as an intellectual property (IP) of the model creator. However, a pirate can illegally copy, redistribute or abuse the model without permission. In recent years, a few Deep Neural Networks (DNN) IP protection works have been proposed. However, most of existing works passively verify the copyright of the model after the piracy occurs, and lack of user identity management, thus cannot provide commercial copyright management functions. In this paper, a novel user fingerprint management and DNN authorization control technique based on backdoor is proposed to provide active DNN IP protection. The proposed method can not only verify the ownership of the model, but can also authenticate and manage the user's unique identity, so as to provide a commercially applicable DNN IP management mechanism. Experimental results on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets show that the proposed method can achieve high detection rate for user authentication (up to 100% in the three datasets). Illegal users with forged fingerprints cannot pass authentication as the detection rates are all 0 % in the three datasets. Model owner can verify his ownership since he can trigger the backdoor with a high confidence. In addition, the accuracy drops are only 0.52%, 1.61 % and -0.65% on CIFAR-10, CIFAR-100 and Fashion-MNIST, respectively, which indicate that the proposed method will not affect the performance of the DNN models. The proposed method is also robust to model fine-tuning and pruning attacks. The detection rates for owner verification on CIFAR-10, CIFAR-100 and Fashion-MNIST are all 100% after model pruning attack, and are 90 %, 83 % and 93 % respectively after model fine-tuning attack, on the premise that the attacker wants to preserve the accuracy of the model.